Application Note: Bioprinting Beyond the Limitations of Traditional Cancer Model
M-Series Application Note: Bioprinting Beyond the Limitations of Traditional Cancer Models View Paper
Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) uncoupling in skeletal muscle, and mitochondrial uncoupling via uncoupling protein 1 (UCP1) in brown/beige adipose tissue are two primary mechanisms implicated in energy expenditure. Here, the effects of glycogen synthase kinase 3 (GSK3) inhibition via lithium chloride (LiCl) treatment on SERCA uncoupling in skeletal muscle and UCP1 expression in adipose were investigated. C2C12 and 3T3-L1 cells treated with LiCl had increased SERCA uncoupling and UCP1 protein levels, respectively, ultimately raising cellular respiration; however, this was only observed when LiCl treatment occurred throughout differentiation. In vivo, LiCl treatment (10 mg/kg/day) increased food intake in chow-fed and high-fat diet (HFD, 60% kcal) fed male mice without increasing body mass – a result attributed to elevated daily energy expenditure.
In soleus muscle, the lab determined LiCl treatment promoted SERCA uncoupling via increased expression of SERCA uncouplers, sarcolipin and/or neuronatin, under chow and HFD-fed conditions. They attribute these effects to the GSK3 inhibition observed with LiCl treatment as partial muscle specific GSK3 knockdown produced similar effects. In adipose, LiCl treatment inhibited GSK3 in inguinal WAT (iWAT) but not in brown adipose tissue under chow-fed conditions, which in turn led to an increase in UCP1 in iWAT and a beiging-like effect with a multilocular phenotype. The beiging-like effect was not observed, and increase in UCP1 when mice were fed a HFD, as LiCl could not overcome the ensuing overactivation of GSK3. Nonetheless, the study establishes novel regulatory links between GSK3 and SERCA uncoupling in muscle and GSK3 and UCP1 and beiging in iWAT.
M-Series Application Note: Bioprinting Beyond the Limitations of Traditional Cancer Models View Paper
Intravital Microscopy- Real-time Tracking of Osteoclast Activity for Bone Disease Studies View Paper
M-Series Application Note: Deep Brain Imaging Utilizing Novel Surgical Techniques: Cranial Imaging Window
M-Series White Paper: Baker InvivO2 and PhO2x Box in orthopaedics, metabolism and body
System:γ-eye View Paper Here Sukhvir Kaur Bhangu, Soraia Fernandes, Giovanni Luca Beretta, Stella
System:Celloger The Live Cell Imaging is a method to examine living cells over