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A B S T R A C T

Multiple myeloma (MM) is an aggressive blood cancer arising from plasma cells. B cell maturation antigen 
(BCMA)-directed chimeric antigen receptor T cell (α-BCMA-CAR-T) immunotherapies currently provide life- 
saving treatment for MM patients. Unfortunately, the high cost and manufacturing complexity of autologous 
CAR-T therapy remain important limitations. Novel research is underway to use CAR-expressing natural killer 
(NK) cells as an allogeneic CAR-T alternative, but studies have yet to evaluate long-term CAR-NK efficacy against 
MM. In this study, NK cells were isolated, expanded via feeder-cell stimulation, and engineered to express 
α-BCMA-CAR with or without human IL-15 co-expression using lentiviral vectors. In a xenograft model, both 
α-BCMA-CAR and IL-15 expression were required for persistent restriction of MM growth in the blood and bone 
marrow. Despite near complete and sustained elimination of MM in the bone marrow, long-term assessment of 
mice treated with α-BCMA-CAR-IL15 NK cells revealed the emergence of extramedullary disease (EMD) in the 
form of BCMA-positive MM plasmacytomas. This study showcases α-BCMA-CAR-IL15 NK cell therapy as a potent 
anti-MM therapeutic, achieving sustained MM elimination from the bone marrow and greatly extending survival. 
However, α-BCMA-CAR-IL15 NK cells appeared ineffective at eliminating extramedullary disease. By demon
strating the strengths and weaknesses of α-BCMA-CAR-IL15 cells, we hope this study could help direct the use of 
such therapies in clinical trials and provide a valuable pre-clinical MM model for studying and developing in
terventions for aggressive MM-EMD.

1. Introduction

Multiple myeloma (MM) is an incurable hematological cancer caused 
by the malignant transformation of plasma cells, resulting in various 
clinical presentations attributed to unregulated plasma cell proliferation 
in the bone marrow and hyper-production of antibodies, including bone 
destruction, infections, anemia, kidney failure and hypercalcemia. 
Firstline treatments include combinations of immunomodulatory drugs, 

proteasome inhibitors, and/or anti-CD38 monoclonal antibodies [1–3]. 
These regimens have increased patient survival from 4 to 8 years [4]. 
Despite these advances, patients with disease refractory to the three 
main drug classes have dismal outcomes, with a median overall survival 
of approximately 1 year [5], necessitating improved treatment 
strategies.

The B cell maturation antigen (BCMA) plays a crucial role in B cell 
differentiation [6]. It is highly expressed on MM compared to healthy 
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plasma cells, making BCMA an optimal immunotherapeutic target [7]. T 
cells expressing anti-BCMA chimeric antigen receptors (α-BCMA-CAR-T) 
have been FDA-approved since 2021 for the treatment of MM with an 
overall response rate of 73–98 % [8,9]. However, CAR-T therapy con
tinues to pose financial, social and logistical barriers that limit universal 
patient access [10,11]. In addition, the high cost and lengthy 
manufacturing time for available autologous α-BCMA-CAR-T therapies 
ide-cel (median 47 days, range 34–91) and cilta-cel (median 70 days, 
range 36–275) [12,13] severely restricts access for patients with 
aggressive disease who do not have adequate bridging therapies.

Natural killer (NK) cells may be an attractive CAR-T alternative due 
to their established safety in allogeneic clinical trials [14] with the po
tential to generate universal, cost-effective “off-the-shelf” immuno
therapies from healthy donors [15]. NK cells have diverse receptors 
which can recognize tumour cells that downmodulate human leukocyte 
antigens (HLA) ligands for immune escape [15]. Recent studies have 
shown that MM can suppress NK cell-mediated anti-myeloma activity by 
upregulating HLA-C and HLA-E expression [16–18]. Furthermore, NK 
cells require IL-2 and/or IL-15 cytokine stimulation to support their in 
vivo persistence [19]. Cytokine and CAR encoding sequences can be 
incorporated together in multi-expression constructs to enhance the 
persistence or function of CAR-expressing cells without exogenous 
administration of cytokines [20,21], as was done for an 
α-CD19-CAR-IL15 clinical trial [22]. In this study, we perform long-term 
in vivo assessment of α-BCMA-CAR NK cells with or without IL-15 
expression, demonstrating that both CAR and IL-15 are required for 
NK persistence and the effective inhibition of MM growth in the blood 
and bone marrow. Notably, despite effective restriction in the bone 
marrow, we observe a late onset of BCMA-positive tumour masses, 
consistent with extramedullary disease (EMD), which is predominantly 
observed in relapsed MM patients [23]. This report highlights both the 
strengths and weaknesses of α-BCMA-CAR-IL15 NK cell therapy, 
providing critical insights for CAR-NK clinical development and a 
research platform to explore next-generation or combinatorial therapies 
to target MM-EMD.

2. Methods

2.1. Culture of human cell lines

NALM6 (ATCC) and MM.1S (ATCC, gifted by Dr. Michele Ardolino) 
cell lines were cultured in RPMI-1640 media (350-000-CL; Wisent) 
containing 10 % HI-FBS (12484028; Gibco), 100 μg/mL Pen/Strep 
(SV30010; Hyclone), 55 μM β-Mercaptoethanol (21985023; Gibco), and 
20 mM HEPES (CA12001-708; VWR) (hereafter called RP10 media). 
Lenti-X 293T cells (632180; Takara) were cultured with 10 % HI-FBS 
and 100 μg/mL Pen/Strep supplemented High-Glucose DMEM media 
(319-005-CL; Wisent). NK92 cells were cultured in RP10 supplemented 
with 200 U/mL human recombinant IL-2 (NCI Preclinical Repository, 
USA).

2.2. Isolation and production of a human primary NK (pNK) cell master 
stock

Healthy adult blood collection was approved by the Ottawa HSNR 
Ethics Board (#20200527-01H) and the University of Ottawa (#H-01- 
21-6568). Peripheral blood mononuclear cells (PBMC) were isolated by 
Ficoll gradient centrifugation as previously described [24]. Primary NK 
cells were isolated by negative magnetic selection using the MojoSort 
human NK cell isolation kit (480054; Biolegend) and plated in RP10 
supplemented with 100 U/mL IL-2. pNKs were immediately stimulated 
1:2 with irradiated membrane-bound IL-21 and 4-1BBL-expressing K562 
feeder cells [25] (gifted from CYTOSEN) and expanded for 7 days based 
on a previously reported protocol [26]. The partially expanded pNK cells 
(hereafter called master stock) were frozen at − 80 ◦C with freezing 
media containing 90 % HI-FBS and 10 % DMSO (BP231-100; 

FisherBioReagents).

2.3. Plasmid construction

CAR constructs incorporated a BCMA-specific camelid nanobody 
(VHH) binding element generated via immunization of an adult llama 
glama and phage panning against human BCMA extracellular domain 
fused to a VHH carrier, similarly to previously reported [27,28]. The 
α-BCMA-VHH (clone A6) was then integrated into a lentiviral plasmid 
along with a human CD8-hinge domain, CD28-transmembrane domain, 
and both 4-1BB and CD3ζ signaling domains to make the CAR sequence. 
In addition, either a NeonGreen fluorescent tag or human IL-15 cytokine 
was linked to the CAR via a P2A sequence. The amino acid sequences for 
α-BCMA-CAR with or without IL-15 can be found in Supplementary 
Table S1. A control GFP-IL15 lentiviral plasmid was also generated. The 
baboon envelope retroviral glycoprotein (BaEV-TR) was chosen to effi
ciently transduce NK92 and primary NK cells [29,30], and was cloned as 
previously described [24].

2.4. Lentivirus production

Lentivirus was produced as previously described [24]. Briefly, 
Lenti-X 293T cells were transfected using Lipofectamine 3000 
(L3000015; Invitrogen) with 1,200 ng of transfer plasmids, 1,200 ng of 
psPAX2 (gifted from Didier Trono; 12260; Addgene), and 160–200 ng of 
BaEV-TR. 48- and 96-h viral supernatant was collected, filtered and 
frozen at − 80 ◦C.

2.5. NK92 cell transduction

Functional lentivirus titer was estimated by transducing NK92 cells 
with serial dilutions of virus as previously described [24]. NK92 cells 
were transduced using a virus MOI of 1–2 as previously described [24]. 
α-BCMA-CAR NK92 cells were sorted based on CAR+ EGFP+ expression 
using the SH800 (Sony) at the University of Ottawa (uOttawa) flow core. 
GFP-IL15 and α-BCMA-CAR-IL15 NK92 cells were selected for trans
duced populations by culturing the cells without IL-2.

2.6. pNK cell transduction and expansion

Master stock pNK cells were thawed and rested overnight in RP10 
media containing 100 U/mL IL-2. The next day, pNKs were transduced 
with virus (MOI 2–5) in a Retronectin-coated 48-well flat-bottom plate 
with Opti-MEM media supplemented with 5 % HI-FBS and 200 U/mL IL- 
2. The cells were spun down at 1200×g for 30 min at 32 ◦C and cultured 
overnight at 37 ◦C and 5 % CO2. The next day, cells were resuspended in 
NKMACS (130-114-429; Miltenyi Biotec) supplemented with 10 % HI- 
FBS, 100 μg/mL Pen/Strep and 100 U/mL IL-2 and were stimulated 
with 5x more irradiated feeder cells. Throughout expansion, NKMACS 
media was replaced every 2–3 days. pNKs were stimulated 1:2 with 
feeder cells after 7 days, followed by expansion for another 5 days. Fully 
expanded NK cells (21 days from PBMC isolation, 13 days after trans
duction) were used for in vitro assays and in vivo studies (Supplementary 
Fig. S1).

2.7. Immunostaining

Refer to supplemental methods for a list of antibodies and viability 
dyes used, as well as surface and intracellular immunostaining pro
tocols. Anti-VHH (Alexa-Fluor647-CAR) antibody was generated at the 
NRC [31].

2.8. NK cell functional assays

5 × 104 NK cells were incubated with NALM6 or MM.1S target cells 
at an E:T ratio of 1:3 in a 96-well U-bottom plate. GolgiPlug (555028; 
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BD) or anti-CD107a antibody was added immediately during plating for 
IFNγ or CD107a measurement, respectively. After 4 h of co-incubation, 
cells were stained with anti-CD56, anti-CAR, live/dead fixable dye for 
NK92 cells and anti-CD56, live/dead fixable dye for pNK cells. Intra
cellular IFNγ proteins were fixed and stained with an anti-IFNγ antibody 
according to the manufacturer’s protocol (555028, BD).

2.9. IncuCyte cytotoxicity assays

1 × 105 NuclightRED MM.1S cells were incubated with E:T ratios of 
0.3:1 for NK92 and 0.5:1 for pNK cells in a 96-well flat-bottom plate. The 
cells were imaged using phase, green and red channels every 2 h at 10×
magnification using IncuCyte S3 (Satorius). The red fold change was 
calculated using the equation below. (Fluor: Fluorescence, t: time) 

Fluort=x

Fluort=0 

2.10. Cytokine depletion viability assays

2.5 × 104 NK92 or primary NK cells were seeded in a 24-well plate 
with RP10 or NKMACS, respectively. After 3 and 5 days, an aliquot was 
taken for immunostaining with anti-CD56, anti-CAR, and live/dead 
fixable dye. Viability was gated on EGFP+ or CAR+ cells when 
transduced.

2.11. In vivo multiple myeloma models

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice (Jackson Laboratories) 
were maintained in a pathogen-free animal facility at uOttawa following 
Canadian Council on Animal Care regulations. NSG female mice (8–14 
weeks old) received 2.5 × 106 firefly luciferase-expressing MM.1S cells 
intravenously. Mice received either 5 × 106 total pNKs (n = 5), or 3 ×
106 to 4.8 × 106 α-BCMA-CAR-IL15-positive pNK cells (n = 5–10) 
intravenously 2 days post-MM injection. Leftover pNK cells were 
immediately frozen in liquid nitrogen for consecutive injection on day 
25 post-MM (n = 5). Luciferase signal was measured once a week by 
injecting 150 mg/kg firefly D-luciferin (122799; PerkinElmer) and 
imaged using IVIS Spectrum (PerkinElmer) or Newton 7.0 FT500 
(Vilber) followed by bioluminescent data analysis using Aura 4.08 
(Spectral Instruments Imaging) or Kuant (Vilber), respectively. Mouse 
blood was taken every 1–2 weeks and weight was measured once per 
week. Mice were sacrificed based on high luciferase signal (>3 × 109 

photons/s), movement ability (hind limb paralysis), reactivity, and 
weight loss (>20 %). Refer to supplemental methods for organ har
vesting and cell processing procedures. All procedures were approved by 
and conducted in accordance with uOttawa animal guidelines.

2.12. Statistical analysis and graph generation

Graphs and statistical analysis were generated using GraphPad Prism 
5 (Dotmatics). Two-way analysis of variance (ANOVA) followed by a 
Bonferroni post-hoc test was used to test the means of multiple groups. 
One-way ANOVA, followed by Tukey post-hoc test, and unpaired two- 
tailed t-test were used to test the means between two or more groups, 
respectively. Survival curves were compared using the Log-rank 

(Mantel-Cox) test. Graphs with log(10) y-axis were transformed to log 
values before analysis. Where indicated, R software (v.4.4) was used to 
statistically analyze IVIS tumour burden and weight for more than two 
groups. Using the lme4 package (v1.1-36), log transformed tumour 
burden and linear weight loss (normalized to baseline) were modeled 
using a linear mixed effects model with time as a cubic polynomial 
interacting with treatment and random intercepts and slopes for 
repeated measures. Comparisons of group means were conducted with 
the emmeans package (v1.10.7) using the Tukey post-hoc test. Statistical 
significance for all analyses was defined as p < 0.05.

3. Results

3.1. Anti-BCMA-CAR-IL-15 expression enhances NK92 effector function 
against myeloma cells

We first generated novel α-BCMA CAR constructs using a modular
ized CAR plasmid similar to that previously reported [28]. The CAR 
construct consists of an α-BCMA-VHH [27,28], 4-1BB and CD3ζ 
signaling domains linked to either a NeonGreen fluorescent tag 
(α-BCMA-CAR) or the human IL-15 cytokine (α-BCMA-CAR-IL15) via a 
P2A sequence (Supplementary Table S1). A control GFP-IL15 construct 
was also generated (Fig. 1A). Lentiviral transduction of NK92 cells 
(Fig. 1B) showed a single population of GFP and CAR with GFP-IL15 and 
α-BCMA-CAR-IL15 virus, respectively. A double GFP+/CAR+ population 
was observed when transduced with α-BCMA-CAR-GFP, indicating that 
both CAR and mNeonGreen reporter are well translated under the EFS1α 
promoter.

We next evaluated the effector function of our engineered NK92 cells 
against the BCMA-negative leukemia (NALM6) and BCMA-high multiple 
myeloma (MM.1S) target cell lines (Fig. 1C). IFNγ and CD107a expres
sion of CAR+ NK92 cells was significantly increased compared to CAR- 
NK92 when co-incubated with the BCMA-high MM.1S cell line (Fig. 1D, 
Supplementary Fig. S2). There was no difference in functional cytokine 
expression between CAR- and CAR+ NK92 cells when incubated alone 
or with the BCMA-negative NALM6 control cell line. To assess the 
cytotoxicity of NK92 cells, we incubated CAR- or CAR+ NK92 cells with 
BCMA-high MM.1S cells that express NuclightRED and measured the red 
fluorescence of MM.1S growth over 48 h (Fig. 1E). CAR+ NK92 cells 
were able to prevent MM.1S growth while there was no significant dif
ference between the growth of MM.1S alone or when incubated with 
CAR- NK92 cells.

Given the critical role of human IL-15 in NK cell survival and pre
vious clinically successful CAR-NK strategies [22], we investigated 
whether introducing the human IL-15 gene could maintain NK cell 
survival in vitro without conventional exogenous IL-2 cytokine supple
mentation. Unmodified (WT) and α-BCMA-CAR NK cells died by D5, 
whereas GFP-IL15 and α-BCMA-CAR-IL15 NK cells maintained their 
viability without exogenous cytokine support in the NK92 cell line 
(Fig. 1F). When IL-15-positive NK92 cells were cultured long-term 
without IL-2, we saw a preferential selection of transduced NK92 cells 
(Supplementary Fig. S3A and B). Taken together, α-BCMA-CAR-IL-15 
expression increases NK92 effector function against multiple myeloma.
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3.2. Anti-BCMA-CAR-IL-15 expression enhances anti-myeloma activity 
of primary NK cells

We next corroborated whether our α-BCMA-CAR construct also 
augments the effector function of primary NK (pNK) cells against 
myeloma cells in vitro. pNKs were enriched from human PBMCs and 
expanded for 7 days using irradiated feeder cells and cryopreserved to 
generate a pNK master stock. Master stock pNKs were thawed, trans
duced and expanded for an additional 13 days, for a total of 21 days of 
expansion from PBMC isolation (Supplementary Fig. S1). pNK cells 
transduced with GFP-IL15 or α-BCMA-CAR-IL15 constructs showed 
single GFP or CAR populations while α-BCMA-CAR-GFP transduction 
showed a double GFP+/CAR+ population at full expansion (Fig. 2A). 
Similarly to NK92, CAR+ pNK cells significantly increased IFNγ and 
CD107a expression compared to untransduced (UT) pNKs when incu
bated with BCMA-high MM.1S cells, whereas IFNγ and CD107a 
expression was minimal or non-significant when BCMA-negative 
NALM6 cells were used (Fig. 2B, Supplementary Fig. S4A). When we 
assessed primary NK cytotoxicity using the live-cell IncuCyte imager 
(Fig. 2C, Supplementary Fig. S4B), the growth of MM.1S cells was 
effectively controlled by CAR+ pNK cells while it remained unaltered 

when MM cells were incubated alone or with untransduced pNK cells. 
Interestingly, both UT and CAR+ pNK cells from donor 3 suppressed 
MM.1S growth, indicating donor-dependent variation in unmodified 
pNK anti-myeloma cytotoxicity. Consistent with the results observed in 
NK92 cells, incorporation of the human IL-15 gene protected primary 
NK cells (from two donors) from cell death in vitro without IL-2 (Fig. 2D). 
Notably, when we compared the anti-myeloma cytotoxicity of primary 
NKs in the absence of IL-2 over 48 h, only α-BCMA-CAR-IL15 pNK cells 
effectively controlled MM.1S growth (Supplementary Fig. S5). Overall, 
these results indicate that α-BCMA-CAR-IL15-expressing NK cells hold 
strong potential for effective anti-myeloma treatment in vivo.

3.3. α-BCMA-CAR-IL15 pNK cells inhibit myeloma growth while 
maintaining persistence in vivo

To evaluate the persistence and anti-myeloma cytotoxicity of 
α-BCMA-CAR-IL15 pNK cells in vivo, we injected 2.5 × 106 MM.1S cells 
expressing firefly luciferase (MM.1S-FLUC) intravenously (i.v.) into NSG 
mice. After 2 days post-MM injection, the mice received a single dose of 
5 × 106 untransduced (UT), GFP-IL15, α-BCMA-CAR or α-BCMA-CAR- 
IL15 primary NK cells intravenously (Fig. 3A). GFP and CAR expression 

Fig. 1. α-BCMA-CAR-IL15 enhances NK92 effector function and cytotoxicity. (A) The design of GFP-IL15, α-BCMA-CAR and α-BCMA-CAR-IL15 constructs; (B) 
GFP and CAR expression of transduced NK92 cells measured by flow cytometry; (C) BCMA expression of target cell lines measured by flow cytometry; (D) IFNγ and 
CD107a functional comparison of α-BCMA-CAR negative (CAR-) or positive (CAR+) NK92 cells against BCMA-neg (NALM6) or BCMA-high (MM.1S) target cells. n =
3 biological replicates; (E) The red fluorescent fold change of MM.1S NuclightRED cell growth when incubated with CAR- or CAR+ NK92 cells over 48 h. CAR-/+
groups are compared to the MM.1S target alone. n = 2 biological replicates; (F) The viability of NK92 WT or NK92 cells transduced with α-BCMA-CAR, GFP-IL15 or 
α-BCMA-CAR-IL15 NK92 was assessed over 5 days without exogenous cytokines. n = 2 biological replicates. All data represent mean ± SEM. ns, non-significant; *p 
< 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Fig. 2. α-BCMA-CAR-IL15 augments primary NK cell effector function and cytotoxicity in vitro. (A) GFP and CAR expression of untransduced or transduced 
primary NK (pNK) cells measured by flow cytometry represented by one donor; (B) IFNγ and CD107a functional comparison of untransduced (UT) or α-BCMA-CAR- 
positive (CAR+) pNKs against BCMA-neg (NALM6) or BCMA-high (MM.1S) target cells. n = 3 donors; (C) The red fluorescent fold change of MM.1S NuclightRED cell 
growth when incubated with UT or CAR+ pNK cells over 32 h. n = 2 donors; (D) The viability of untransduced, α-BCMA-CAR, GFP-IL15 and α-BCMA-CAR-IL15 
primary NK cells was assessed over 5 days without exogenous cytokines. n = 2 donors. All data represent mean ± SEM. ns, non-significant; *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001. UT: untransduced.
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Fig. 3. The anti-myeloma comparison of untransduced, GFP-IL15, α-BCMA-CAR and α-BCMA-CAR-IL15 primary NK cells. (A) Schematic experimental 
timeline in which 2.5 × 106 luciferase-expressing MM.1S multiple myeloma cells were injected (i.v.) into NSG mice, followed by a single injection (i.v.) of 5 × 106 

total untransduced, GFP-IL15, α-BCMA-CAR or α-BCMA-CAR-IL15 primary NK cells 2 days later (n = 5); (B) CAR and GFP expression of primary NK cells on the day 
of injection; (C–D) The tumour burden of each group was measured on days 7, 11, 18, 25, 32, 39 and 42 using IVIS and the total bioluminescent signal was 
quantified. Statistical analysis was performed using R software as described in the methods; (E) The percent weight change of mice was monitored weekly. Statistical 
analysis was performed using R software as described in the methods; (F) The phenotype and number of human CD45+ primary NK cells in the blood, spleen and 
bone marrow at day 36 or 42 endpoint; (G) The phenotype and number of MM cells in the bone marrow at day 36 or 42 endpoint. MM cells were identified as CD38+/ 
CD138mixed after gating on the human CD45 and mouse CD45.1 negative population (hCD45-/mCD45.1-). Representative images of the mouse femur depicting the 
colour of the bone marrow at endpoint. The contrast of all femur images was increased by 20 % in PowerPoint. All 5 mice from each group were sacrificed at day 36 
or 42 endpoint and lymphocytes were harvested from the blood, spleen and bone marrow for flow staining. All data represent mean ± SD. ns, non-significant; *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. D: days; UT: untransduced; HLP: hind-limb paralysis; BM: bone marrow; MM: multiple myeloma.
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were confirmed to be >73 % on the day of injection (Fig. 3B). Biolu
minescent luciferase signal was measured to assess MM.1S tumour 
growth (Fig. 3C and D), while mouse weight (Fig. 3E) and mobility 
assessment (hind limb paralysis, HLP) was used to determine an ethical 
endpoint. Based on in vivo bioluminescent imaging, we observed com
parable MM growth localized to the spine, hips, and head of untreated, 
UT pNK and GFP-IL15 pNK-treated mice starting at day 18 (Fig. 3C and 
D), whereas MM growth was delayed by 7 days in mice treated with 
α-BCMA-CAR pNK cells. Importantly, α-BCMA-CAR-IL15 pNK cell 
treatment nearly completely suppressed MM growth until day 39. Pe
ripheral blood analysis revealed that the number of IL-15-negative pNK 
cells (UT and α-BCMA-CAR) was negligible, whereas IL-15-expressing 
pNK cells (GFP-IL15 and α-BCMA-CAR-IL15) expanded ~3.2-fold by 
the endpoint (Supplementary Fig. S6A). When assessing pNK cell 
phenotype in vivo, we observed a selection of GFP and a gradual decrease 
in CAR MFI over time (Supplementary Fig. S6B).

Untreated, UT pNK and GFP-IL15 pNK mice reached humane 
endpoint on day 36, whereas mice treated with α-BCMA-CAR pNK cells 
reached humane endpoint on day 42 post-MM injection. Mice treated 
with α-BCMA-CAR-IL15 pNKs did not reach their humane endpoint but 
were sacrificed on day 42 for comparative analysis. When quantifying 
hCD45+ and mCD45.1- pNK cells in the blood, spleen and bone marrow 
of treated mice at their endpoints, we found a negligible number of IL- 
15-negative pNK cells in the blood and less than 1 × 103 pNKs per 
spleen or femur (Fig. 3F). GFP-IL15 and α-BCMA-CAR-IL15 pNK cells 
were found in similar amounts in the blood and the spleen. Notably, the 
quantity of α-BCMA-CAR-IL15 pNK cells in the bone marrow at the 
endpoint was ~4.7-fold more than IL-15-negative BCMA-CAR pNK and 
10-fold more than GFP-IL15 pNK-treated mice (Fig. 3F). We found 
prominent CD38+ and CD138mixed MM populations in the bone marrow 
of untreated, UT pNK, GFP-IL15 pNK and α-BCMA-CAR pNK-treated 
groups (Fig. 3G), which was easily noticed by the unusual white 
colour of the BM within the femur. Remarkably, α-BCMA-CAR-IL15 pNK 
cells dramatically reduced MM growth when compared with other pNK 
treatments, which was corroborated by the preservation of healthy red 
BM. Taken together, a single dose of α-BCMA-CAR-IL15 pNK cells 
significantly inhibited MM growth in vivo and confirms that the inclusion 
of both CAR and the IL-15 gene is necessary for therapeutic efficacy and 
in vivo persistence of α-BCMA-CAR-IL15 pNK cells.

3.4. α-BCMA-CAR-IL15 pNK treatment prolongs survival but allows for 
extramedullary disease

Since α-BCMA-CAR-IL15 pNK treatment did not reach the endpoint 
on day 42, we next sought to assess the anti-myeloma activity of 
α-BCMA-CAR-IL15 pNK cells over a longer period of time. Similarly as 
above, MM.1S-FLUC-bearing mice were treated 2 days later with 3 × 106 

α-BCMA-CAR-IL15-positive pNKs in separate experiments using two 
independent pNK donors (Fig. 4A and B). During the course of these 
experiments, the IVIS imaging system was upgraded from the IVIS 
Spectrum to Newton 7.0 FT500. In both experiments, untreated mice 
exhibited rapid MM progression in osseous regions of the spine, hips and 
head and reached an ethical endpoint due to HLP between day 36 and 38 
(Fig. 4C–E). In contrast, α-BCMA-CAR-IL15 pNK treatment inhibited MM 
growth until day 40, after which localized tumour growth, mostly 
outside of osseous regions, was observed. Despite the onset of localized 
tumours in various anatomical regions, treated mice did not show 
adverse clinical symptoms such as weight loss or hind-limb paralysis, 
and were sacrificed between day 58 and 73 due to high bioluminescent 

signal in localized regions or the presence of palpable tumours. At the 
endpoint of both experiments (Fig. 4F and G), untreated mice were 
found to have a mix of mouse lymphocyte and MM cells in the blood 
with >95 % MM cell engraftment in the bone marrow. Remarkably, 
α-BCMA-CAR-IL15 pNK-treated mice had <5 % MM in blood and <1 % 
in the bone marrow. These findings suggest that α-BCMA-CAR-IL15 
pNKs effectively kill MM in the bone marrow.

At sacrifice, mice were autopsied and a total of 20 extramedullary 
tumours were found in 13 mice who received α-BCMA-CAR-IL15 pNK 
treatment (Fig. 4H). In humans, myeloma extramedullary disease is 
currently divided into two classifications: (1) paraskeletal plasmacyto
mas (PPs), which are tumour masses in direct contact with the bone and 
(2) extramedullary plasmacytomas (EMPs), which are soft-tissue tumour 
masses that result from hematogenous spread without bone contact 
[32]. From all mice in both experiments, 2 tumours were PPs while 18 
were EMPs. The plasmacytomas weighed 1019 ± 897.1 mg and 
measured 724.8 ± 634.5 mm3 (Fig. 4I), not exceeding ethical tumour 
limits for subcutaneous tumour models, except for one mouse. Pheno
typing by flow cytometry revealed that 80 ± 17.6 % of the plasmacy
tomas were MM cells with tumour-infiltrating CD45+ pNK cells present 
in all samples, with a mean of 1.8 ± 3.1 % (Fig. 4J). Importantly, BCMA 
expression levels of MM cells within plasmacytoma solid tumours of 
CAR-NK-treated mice were comparable to MM cells from the bone 
marrow of untreated mice (Fig. 4K), suggesting that BCMA down
modulation was not the mechanism of tumour evasion. Taken together, 
α-BCMA-CAR-IL15 pNK treatment readily eliminates MM in the bone 
marrow, leading to significantly prolonged survival. However, CAR-NK 
cell treatment failed to prevent the onset of MM extramedullary disease.

3.5. Consecutive α-BCMA-CAR-IL15 pNK treatment does not prevent 
extramedullary disease

Since we observed MM extramedullary disease six weeks post-MM 
injection along with CAR downregulation in mice treated with 
α-BCMA-CAR-IL15 pNK cells (Supplementary Fig. S6B), we reasoned 
that CAR downregulation might be the primary cause of extramedullary 
disease development. Thus, we tested whether consecutive α-BCMA- 
CAR-IL15 pNK treatments could prevent relapse. 4.8 × 106 α-BCMA- 
CAR-IL15-positive pNKs were injected 2 days post-MM injection, and 
leftover pNK cells were immediately frozen for future BCMA-CAR-IL15 
treatments (Fig. 5A and B). We verified that frozen α-BCMA-CAR-IL15 
pNKs still significantly inhibited MM growth, although their efficacy 
was slightly reduced compared to fresh α-BCMA-CAR-IL15 pNKs 
(Supplementary Fig. S7A–C). MM growth was monitored and a second 
α-BCMA-CAR-IL15 pNK treatment was administered before plasmacy
tomas were detected on day 25 post-MM injection (2x CAR-IL15 pNK) 
(Fig. 5C and D). Despite the administration of consecutive α-BCMA-CAR- 
IL15 pNK treatment (2x), there was no difference in MM growth (Fig. 5C 
and D) or weight (Fig. 5E) compared to the cohort treated only once 
(1x). Consistent with previous in vivo experiments, there was a drastic 
reduction in MM cells within the bone marrow of CAR-IL15 pNK-treated 
mice compared to untreated mice at the endpoint; however, there was 
no significant difference in bone marrow MM cell engraftment between 
1x and 2x CAR-IL15 pNK treatment (Fig. 5F). An equal number of 
plasmacytomas were found with both single or consecutive α-BCMA- 
CAR-IL15 treatments, with 1/3 being PPs (1x pNK, mouse 4 and 2x pNK, 
mouse 1) with the remaining being EMPs (Fig. 5G). There was no dif
ference between single or consecutive CAR-IL15 pNK treatments when 
assessing plasmacytoma weight, volume, MM percent composition 
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(>83 %) and BCMA expression (Fig. 5H-J). Taken together, consecutive 
treatment with CAR-IL15 pNKs was unable to prevent the emergence 
and growth of plasmacytoma tumours.

4. Discussion

Multiple myeloma (MM) is identified by the uncontrolled prolifera
tion of malignant plasma cells [3]. Despite remarkable improvements in 
the median survival for patients diagnosed with MM over the past two 
decades, the relapse rate remains high, emphasizing the need for novel 
therapies. FDA-approved CAR-T immunotherapies targeting BCMA on 
MM cells are limited by autologous transfusions, high cost and limited 
patient access [10,11,33]. Allogeneic α-CD19-CAR NK cells have shown 
potential in leukemia and lymphoma clinical trials, allowing 
off-the-shelf treatment with minimal side effects [14,34]. While some 
α-BCMA-CAR-NK phase I/II clinical trials have started recruitment 
(Clinical trials: NCT05182073, NCT06045091, NCT06242249, 
NCT06594211), no long-term in vivo MM studies have been reported. In 
our study, we evaluated both the short and long-term effects of 
α-BCMA-CAR-IL15 primary NK cells in a MM xenograft mouse model to 
fully understand the strengths and weaknesses of these newly emerging 
treatment modalities.

In our in vivo MM model with NK cell treatment, we present defini
tive evidence that both IL-15 and α-BCMA-CAR are essential for effective 
MM disease control. The increased anti-myeloma activity of CAR-IL15 
versus CAR NK cells is corroborated by several studies against various 
cancers [35–39]. The survival of MM-bearing mice after 
BCMA-CAR-IL15 NK cells (days 58–73) presented in our study aligns 
with other BCMA-CAR-NK studies, which also had similar endpoints 
between days 57–70 [38,39]. Notably, our study is the first to monitor 
bioluminescent MM growth long-term after CAR-NK treatment. 
Although IL-15 co-expression promotes CAR-NK cell persistence, we did 
not observe any toxicity related to uncontrolled expansion of 
IL-15-expressing CAR-NK cells [37,40]. Notably, CAR downmodulation 
was observed on persisting IL15-expressing CAR-NK cells in the pe
ripheral blood. Since we designed our construct to express CAR and 
IL-15 simultaneously, pNK persistence suggests that IL-15 was still 
produced and utilized by NK cells, but α-BCMA-CAR could no longer be 
expressed on the cell surface. A similar CAR downmodulation in an 
α-CD19-CAR T cell product was improved by modifying CAR cyto
plasmic residues to prevent lysosomal degradation upon CAR internal
ization, thereby allowing recycling of CARs back to the cell surface [41]. 
In addition, we recently showed that treating with the histone deace
tylase inhibitor, entinostat (ENT), during NK expansion enhanced 
α-CD138-CAR expression and improved anti-myeloma function in vitro 
and in vivo [42].

Given the remarkable MM inhibition achieved with our α-BCMA- 
CAR-IL15 treatment, we next assessed the long-term anti-myeloma 

potential of our therapy. Treatment with α-BCMA-CAR-IL15 NK cells 
improved survival, but we observed the emergence of extramedullary 
disease (EMD) as evidenced by localized MM growth in the form of MM 
plasmacytomas. While we did not observe similar MM-EMD in untreated 
mice, we believe this is likely due to the rapid MM growth in the bone 
marrow, leading to a swift decline in mouse condition and hind limb 
paralysis before such EMD can become apparent. Regardless, this study 
does show that α-BCMA-CAR-IL15-expressing NK cells have a limitation 
in controlling MM-EMD specifically. Notably, consecutive α-BCMA- 
CAR-IL15 NK treatments could not prevent the onset of EMD.

The diagnosis of EMD in the clinic is rapidly increasing due to longer 
patient survival with modern therapies and improved imaging tech
niques [43–45]. The incidence of EMD with newly diagnosed MM 
(NDMM) patients ranges from 0.5 to 6 % whereas relapsed/refractory 
MM (RRMM) patients range from 3.4 to 15 % [23,32,46–48]. In our in 
vivo mouse model of MM treated with α-BCMA-CAR-IL15 NK cells, EMD 
developed in 76 % of mice. The majority of long-term in vivo studies 
treating MM-bearing NSG mice with cell-based immunotherapies (NK or 
T cells) do not show bioluminescent MM growth long-term (<50 days) 
nor indicate the presence or absence of EMD at sacrifice [39,49–52]. To 
our knowledge, the study of Thangaraj et al. [53] was the only other 
long-term study that reported MM-EMD emergence in organs and 
quantified the number of plasmacytomas at endpoint, though without 
conducting phenotyping.

The use of immunocompromised NSG mice without a full immune 
system may limit the clinical translation of our model [54,55]. The 
function and persistence of CAR-NK cells, as well as the incidence of 
EMD may not be reflected when transitioning this therapy to the clinic 
with a human immune system. Unfortunately, current humanized 
mouse models either limit MM engraftment and fail to re-capitulate MM 
disease progression and pathology [56,57] or are not readily available 
[58]. While the gold standard for clinical translation would be a fully 
humanized multiple myeloma (MM) mouse model incorporating human 
PBMCs together with matched patient-derived MM cells, obtaining 
paired samples from the same patient for an autologous setting remains 
ethically challenging. In addition, patient-derived MM cells typically 
exhibit low and inconsistent engraftment efficiency within murine bone 
marrow microenvironments. Instead, xenograft models using immuno
compromised mice engrafted with human MM cell lines continue to 
serve as the standard and practical preclinical platform for evaluating 
CAR-based immunotherapies [39,49–53,59]. There has been some 
progress with NSG mice expressing human IL-6 to support a primary MM 
xenograft model [60] but ex vivo expansion of patient-derived MM cells 
remains limited [61,62].

Recent data from BCMA-CAR-T cell treatments strongly corroborate 
our results. MM studies following BCMA-directed CAR-T cell therapy 
indicate roughly 50 % of relapses involve EMD throughout the body in 
tissues such as the lymph nodes, lungs/pleura, muscles, central nervous 

Fig. 4. The long-term anti-myeloma cytotoxicity of α-BCMA-CAR-IL15 primary NK cells. (A) Schematic experimental timeline in which 2.5 × 106 luciferase- 
expressing MM.1S multiple myeloma cells were injected (i.v.) into NSG mice, followed by a single injection (i.v.) of 3 × 106 α-BCMA-A6-CAR-IL15-positive primary 
NK cells 2 days later; (B) CAR expression of primary NK cells from two donors on the day of injection; (C) The tumour burden from two separate experiments were 
measured weekly using IVIS and the total bioluminescent signal was quantified. Mouse 2, experiment 1 on day 53 was not injected with firefly-luciferin properly 
during initial imaging. It was re-injected and imaged separately on the same day; (D–E) The total bioluminescent signal over time and the percent survival of mice 
from two experiments. Mice were sacrificed between day 58 and 73 (median survival: 68 days in experiment 1, 62 days in experiment 2); (F) The percentage of MM 
cells in the bone marrow at mouse endpoint combined from both untreated and α-BCMA-CAR-IL15 pNK-treated experiments. MM cells were identified as CD38+/ 
CD138mixed after gating on the human CD45 and mouse CD45.1 negative population (hCD45-/mCD45.1-); (G) Percent composition of mouse lymphocytes 
(mCD45.1+), multiple myeloma cells (CD38+/CD138mixed), and pNK cells (hCD45+) in the blood and bone marrow at endpoint combined from both experiments. 
α-BCMA-CAR-IL15 pNK-treated mice had <5 % MM in blood and <1 % in the bone marrow, with a moderate amount of pNK cells remaining in the blood (28.9 ±
39.7 %); (H) Images of tumours identified in α-BCMA-CAR-IL15 pNK-treated mice at endpoint. Mouse number refers to the visualized mice in panel C, starting from 
left to right of the CAR-IL15 pNK-treated groups; (I) Total tumour weight and volume measurements for each mouse; (J) Percent composition of mouse lymphocytes 
(mCD45.1+), multiple myeloma cells (CD38+/CD138mixed), and pNK cells (hCD45+) within the tumours; (K) BCMA expression of MM cells from blood, spleen and 
bone marrow from untreated mice and plasmacytoma tumours from α-BCMA-CAR-IL15-treated mice. Mice were sacrificed on different days depending on when they 
reached a humane endpoint. All mice were autopsied for plasmacytomas, followed by the collection of lymphocytes from the blood, spleen, bone marrow and 
plasmacytomas for flow staining with the exception of CAR-IL15-treated mouse #5, experiment 1. All data represent mean ± SD. ns, non-significant; *p < 0.05; **p 
< 0.01; ***p < 0.001; ****p < 0.0001. D: days; HLP: hind-limb paralysis; BL: blood; SP: spleen; BM: bone marrow; TU: tumour; MM: multiple myeloma.
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Fig. 5. The anti-EMD comparison of single or consecutive α-BCMA-CAR-IL15 primary NK cell treatment. (A) Schematic experimental timeline in which 2.5 ×
106 luciferase-expressing MM.1S cells were injected (i.v.) into NSG mice, followed by either a single injection (i.v.) of 4.8 × 106 α-BCMA-A6-CAR-IL15-positive 
primary NK cells 2 days later (1x) or injection (i.v.) of 4.8 × 106 α-BCMA-A6-CAR-IL15-positive primary NK cells 2 days and 25 days later (2x) (n = 4 untreated, n = 5 
CAR-IL15 pNK); (B) CAR expression of primary NK cells on the day of injection; (C–D) The tumour burden of each group was measured weekly using IVIS and the 
mean bioluminescent signal was quantified. α-BCMA-CAR-IL15 pNK-treated mice were imaged on day 25, followed by randomization for the CAR-IL15 NK-treated 
groups. Bioluminescent images for day 25 are organized into their new groups to follow MM growth progression. (E) The percent weight change of mice was 
monitored weekly; (F) The percentage of MM cells in the bone marrow at mouse endpoint. MM cells were identified as CD38+/CD138mixed after gating on the human 
CD45 and mouse CD45.1 negative population (hCD45-/mCD45.1-). (G) Images of tumours identified in α-BCMA-CAR-IL15 pNK-treated mice at endpoint. Mouse 
number refers to the visualized mice in panel C, starting from left to right of the 1x or 2x CAR-IL15 pNK-treated groups; (H) Tumour weight and volume mea
surements for each CAR-IL15 pNK-treated group; (I) Percent composition of mouse lymphocytes (mCD45.1+), multiple myeloma cells (CD38+/CD138mixed), and pNK 
cells (hCD45+) within the tumours. (J) BCMA expression of MM cells from tumours of BCMA-CAR-IL15-treated mice. Untreated mice were sacrificed on day 38 and 
CAR-IL15 pNK-treated mice were sacrificed on day 52–53. 4 untreated, 5 (1x) CAR-IL15 pNK-treated and 4 (2x) CAR-IL15 pNK-treated mice were autopsied for 
plasmacytomas, followed by the collection of lymphocytes from the bone marrow and plasmacytomas for flow staining. All data represent mean ± SD. ns, non- 
significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. D: days; HLP: hind-limb paralysis; MM: multiple myeloma.
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system, ears/nose/throat, gastrointestinal, skin, urinary system and 
liver [45,63,64]. 43 % of patients with EMD relapse after CAR-T cell 
therapy remained MM-negative in the bone marrow, showing that bone 
marrow minimal residual disease (MRD) does not adequately represent 
overall disease control post-CAR T [64], which is consistent with our 
results. Moreover, the presence of EMD before CAR-T therapy presents 
an even greater challenge. Patients with pre-existing EMD have poorer 
outcomes, including reduced overall response rates, shorter 
progression-free survival, and lower overall survival [65,66]. EMD is 
considered an independent adverse prognostic factor which often re
flects aggressive disease with high-risk cytogenetics in CAR-T therapy 
[23,67]. It suggests that extramedullary compartments may serve as an 
immunosuppressive tumor microenvironment, prohibiting CAR-T cell 
infiltration, persistence and effector function. Factors such as 
myeloid-derived suppressor cells, BCMA downregulation, and clonal 
evolution might contribute to immune escape and resistance [65]. 
Likewise, in our CAR-NK study, extramedullary tumours showed mini
mal pNK infiltration (<10 %). Notably, we did not observe BCMA 
downregulation on EMD-MM cells, indicating that antigen loss is not the 
primary mechanism driving EMD in our model. Interestingly, a phase 1 
trial of bispecific BCMA + GPRC5D CAR-T achieved a 100 % response 
rate even with all RRMM patients with EMD [68], suggesting that novel 
strategies such as dual-target CAR constructs might address the chal
lenge of antigen escape in EMD. Moreover, daratumumab (anti-CD38 
monoclonal antibodies) [53,69] or bi-specific NK cell engagers (BiKEs) 
[70,71] could be used in synergistic combination with CAR-NK cells.

In conclusion, α-BCMA-CAR-IL15 primary NK treatment persisted in 
vivo and strongly inhibited MM growth in the bone marrow, with su
perior efficacy compared to IL15-negative pNKs. Long-term monitoring 
showed effective restriction of MM growth in the blood and bone 
marrow with greatly prolonged survival. However, CAR-NK therapy 
could not limit extramedullary disease relapse. Importantly, this 
consistent in vivo EMD model would offer a valuable opportunity for 
investigating novel combinational therapies against a highly aggressive 
form of MM, thereby promoting the development of affordable and 
accessible immunotherapies for patients.
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