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Multiple myeloma (MM) is an aggressive blood cancer arising from plasma cells. B cell maturation antigen
(BCMA)-directed chimeric antigen receptor T cell (a-BCMA-CAR-T) immunotherapies currently provide life-
saving treatment for MM patients. Unfortunately, the high cost and manufacturing complexity of autologous
CAR-T therapy remain important limitations. Novel research is underway to use CAR-expressing natural killer

BCMA-CAR . . . X .

. (NK) cells as an allogeneic CAR-T alternative, but studies have yet to evaluate long-term CAR-NK efficacy against
Extramedullary disease . R . . . .
Plasmacytomas MM. In this study, NK cells were isolated, expanded via feeder-cell stimulation, and engineered to express

a-BCMA-CAR with or without human IL-15 co-expression using lentiviral vectors. In a xenograft model, both
a-BCMA-CAR and IL-15 expression were required for persistent restriction of MM growth in the blood and bone
marrow. Despite near complete and sustained elimination of MM in the bone marrow, long-term assessment of
mice treated with a-BCMA-CAR-IL15 NK cells revealed the emergence of extramedullary disease (EMD) in the
form of BCMA-positive MM plasmacytomas. This study showcases a-BCMA-CAR-IL15 NK cell therapy as a potent
anti-MM therapeutic, achieving sustained MM elimination from the bone marrow and greatly extending survival.
However, a-BCMA-CAR-IL15 NK cells appeared ineffective at eliminating extramedullary disease. By demon-
strating the strengths and weaknesses of a-BCMA-CAR-IL15 cells, we hope this study could help direct the use of
such therapies in clinical trials and provide a valuable pre-clinical MM model for studying and developing in-
terventions for aggressive MM-EMD.

1. Introduction

Multiple myeloma (MM) is an incurable hematological cancer caused
by the malignant transformation of plasma cells, resulting in various
clinical presentations attributed to unregulated plasma cell proliferation
in the bone marrow and hyper-production of antibodies, including bone
destruction, infections, anemia, kidney failure and hypercalcemia.
Firstline treatments include combinations of immunomodulatory drugs,

proteasome inhibitors, and/or anti-CD38 monoclonal antibodies [1-3].
These regimens have increased patient survival from 4 to 8 years [4].
Despite these advances, patients with disease refractory to the three
main drug classes have dismal outcomes, with a median overall survival
of approximately 1 year [5], necessitating improved treatment
strategies.

The B cell maturation antigen (BCMA) plays a crucial role in B cell
differentiation [6]. It is highly expressed on MM compared to healthy
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plasma cells, making BCMA an optimal immunotherapeutic target [7]. T
cells expressing anti-BCMA chimeric antigen receptors (a-BCMA-CAR-T)
have been FDA-approved since 2021 for the treatment of MM with an
overall response rate of 73-98 % [8,9]. However, CAR-T therapy con-
tinues to pose financial, social and logistical barriers that limit universal
patient access [10,11]. In addition, the high cost and lengthy
manufacturing time for available autologous a-BCMA-CAR-T therapies
ide-cel (median 47 days, range 34-91) and cilta-cel (median 70 days,
range 36-275) [12,13] severely restricts access for patients with
aggressive disease who do not have adequate bridging therapies.

Natural killer (NK) cells may be an attractive CAR-T alternative due
to their established safety in allogeneic clinical trials [14] with the po-
tential to generate universal, cost-effective “off-the-shelf” immuno-
therapies from healthy donors [15]. NK cells have diverse receptors
which can recognize tumour cells that downmodulate human leukocyte
antigens (HLA) ligands for immune escape [15]. Recent studies have
shown that MM can suppress NK cell-mediated anti-myeloma activity by
upregulating HLA-C and HLA-E expression [16-18]. Furthermore, NK
cells require IL-2 and/or IL-15 cytokine stimulation to support their in
vivo persistence [19]. Cytokine and CAR encoding sequences can be
incorporated together in multi-expression constructs to enhance the
persistence or function of CAR-expressing cells without exogenous
administration of cytokines [20,21], as was done for an
a-CD19-CAR-IL15 clinical trial [22]. In this study, we perform long-term
in vivo assessment of a-BCMA-CAR NK cells with or without IL-15
expression, demonstrating that both CAR and IL-15 are required for
NK persistence and the effective inhibition of MM growth in the blood
and bone marrow. Notably, despite effective restriction in the bone
marrow, we observe a late onset of BCMA-positive tumour masses,
consistent with extramedullary disease (EMD), which is predominantly
observed in relapsed MM patients [23]. This report highlights both the
strengths and weaknesses of a-BCMA-CAR-IL15 NK cell therapy,
providing critical insights for CAR-NK clinical development and a
research platform to explore next-generation or combinatorial therapies
to target MM-EMD.

2. Methods
2.1. Culture of human cell lines

NALM6 (ATCC) and MM.1S (ATCC, gifted by Dr. Michele Ardolino)
cell lines were cultured in RPMI-1640 media (350-000-CL; Wisent)
containing 10 % HI-FBS (12484028; Gibco), 100 pg/mL Pen/Strep
(SV30010; Hyclone), 55 pM p-Mercaptoethanol (21985023; Gibco), and
20 mM HEPES (CA12001-708; VWR) (hereafter called RP10 media).
Lenti-X 293T cells (632180; Takara) were cultured with 10 % HI-FBS
and 100 pg/mL Pen/Strep supplemented High-Glucose DMEM media
(319-005-CL; Wisent). NK92 cells were cultured in RP10 supplemented
with 200 U/mL human recombinant IL-2 (NCI Preclinical Repository,
USA).

2.2. Isolation and production of a human primary NK (pNK) cell master
stock

Healthy adult blood collection was approved by the Ottawa HSNR
Ethics Board (#20200527-01H) and the University of Ottawa (#H-01-
21-6568). Peripheral blood mononuclear cells (PBMC) were isolated by
Ficoll gradient centrifugation as previously described [24]. Primary NK
cells were isolated by negative magnetic selection using the MojoSort
human NK cell isolation kit (480054; Biolegend) and plated in RP10
supplemented with 100 U/mL IL-2. pNKs were immediately stimulated
1:2 with irradiated membrane-bound IL-21 and 4-1BBL-expressing K562
feeder cells [25] (gifted from CYTOSEN) and expanded for 7 days based
on a previously reported protocol [26]. The partially expanded pNK cells
(hereafter called master stock) were frozen at —80 °C with freezing
media containing 90 % HI-FBS and 10 % DMSO (BP231-100;
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FisherBioReagents).
2.3. Plasmid construction

CAR constructs incorporated a BCMA-specific camelid nanobody
(VHH) binding element generated via immunization of an adult llama
glama and phage panning against human BCMA extracellular domain
fused to a VHH carrier, similarly to previously reported [27,28]. The
a-BCMA-VHH (clone A6) was then integrated into a lentiviral plasmid
along with a human CD8-hinge domain, CD28-transmembrane domain,
and both 4-1BB and CD3( signaling domains to make the CAR sequence.
In addition, either a NeonGreen fluorescent tag or human IL-15 cytokine
was linked to the CAR via a P2A sequence. The amino acid sequences for
a-BCMA-CAR with or without IL-15 can be found in Supplementary
Table S1. A control GFP-IL15 lentiviral plasmid was also generated. The
baboon envelope retroviral glycoprotein (BaEV-TR) was chosen to effi-
ciently transduce NK92 and primary NK cells [29,30], and was cloned as
previously described [24].

2.4. Lentivirus production

Lentivirus was produced as previously described [24]. Briefly,
Lenti-X 293T cells were transfected using Lipofectamine 3000
(L3000015; Invitrogen) with 1,200 ng of transfer plasmids, 1,200 ng of
psPAX2 (gifted from Didier Trono; 12260; Addgene), and 160-200 ng of
BaEV-TR. 48- and 96-h viral supernatant was collected, filtered and
frozen at —80 °C.

2.5. NK92 cell transduction

Functional lentivirus titer was estimated by transducing NK92 cells
with serial dilutions of virus as previously described [24]. NK92 cells
were transduced using a virus MOI of 1-2 as previously described [24].
a-BCMA-CAR NK92 cells were sorted based on CAR" EGFP™" expression
using the SH800 (Sony) at the University of Ottawa (uOttawa) flow core.
GFP-IL15 and a-BCMA-CAR-IL15 NK92 cells were selected for trans-
duced populations by culturing the cells without IL-2.

2.6. pNK cell transduction and expansion

Master stock pNK cells were thawed and rested overnight in RP10
media containing 100 U/mL IL-2. The next day, pNKs were transduced
with virus (MOI 2-5) in a Retronectin-coated 48-well flat-bottom plate
with Opti-MEM media supplemented with 5 % HI-FBS and 200 U/mL IL-
2. The cells were spun down at 1200 xg for 30 min at 32 °C and cultured
overnight at 37 °C and 5 % CO». The next day, cells were resuspended in
NKMACS (130-114-429; Miltenyi Biotec) supplemented with 10 % HI-
FBS, 100 pg/mL Pen/Strep and 100 U/mL IL-2 and were stimulated
with 5x more irradiated feeder cells. Throughout expansion, NKMACS
media was replaced every 2-3 days. pNKs were stimulated 1:2 with
feeder cells after 7 days, followed by expansion for another 5 days. Fully
expanded NK cells (21 days from PBMC isolation, 13 days after trans-
duction) were used for in vitro assays and in vivo studies (Supplementary
Fig. S1).

2.7. Immunostaining

Refer to supplemental methods for a list of antibodies and viability
dyes used, as well as surface and intracellular immunostaining pro-
tocols. Anti-VHH (Alexa-Fluor647-CAR) antibody was generated at the
NRC [31].

2.8. NK cell functional assays

5 x 10* NK cells were incubated with NALM6 or MM.1S target cells
at an E:T ratio of 1:3 in a 96-well U-bottom plate. GolgiPlug (555028;
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BD) or anti-CD107a antibody was added immediately during plating for
IFNy or CD107a measurement, respectively. After 4 h of co-incubation,
cells were stained with anti-CD56, anti-CAR, live/dead fixable dye for
NK92 cells and anti-CD56, live/dead fixable dye for pNK cells. Intra-
cellular IFNy proteins were fixed and stained with an anti-IFNy antibody
according to the manufacturer’s protocol (555028, BD).

2.9. IncuCyte cytotoxicity assays

1 x 10° NuclightRED MM.1S cells were incubated with E:T ratios of
0.3:1 for NK92 and 0.5:1 for pNK cells in a 96-well flat-bottom plate. The
cells were imaged using phase, green and red channels every 2 h at 10x
magnification using IncuCyte S3 (Satorius). The red fold change was
calculated using the equation below. (Fluor: Fluorescence, t: time)

Fluor,_,
Fluor,_

2.10. Cytokine depletion viability assays

2.5 x 10% NK92 or primary NK cells were seeded in a 24-well plate
with RP10 or NKMACS, respectively. After 3 and 5 days, an aliquot was
taken for immunostaining with anti-CD56, anti-CAR, and live/dead
fixable dye. Viability was gated on EGFP'™ or CAR" cells when
transduced.

2.11. In vivo multiple myeloma models

NOD.Cg-PrkdcSCid Il2rg““1le/SzJ (NSG) mice (Jackson Laboratories)
were maintained in a pathogen-free animal facility at uOttawa following
Canadian Council on Animal Care regulations. NSG female mice (8-14
weeks old) received 2.5 x 10° firefly luciferase-expressing MM.1S cells
intravenously. Mice received either 5 x 10° total pNKs (n = 5), or 3 x
10% to 4.8 x 10° a-BCMA-CAR-IL15-positive pNK cells (n = 5-10)
intravenously 2 days post-MM injection. Leftover pNK cells were
immediately frozen in liquid nitrogen for consecutive injection on day
25 post-MM (n = 5). Luciferase signal was measured once a week by
injecting 150 mg/kg firefly D-luciferin (122799; PerkinElmer) and
imaged using IVIS Spectrum (PerkinElmer) or Newton 7.0 FT500
(Vilber) followed by bioluminescent data analysis using Aura 4.08
(Spectral Instruments Imaging) or Kuant (Vilber), respectively. Mouse
blood was taken every 1-2 weeks and weight was measured once per
week. Mice were sacrificed based on high luciferase signal (>3 x 10°
photons/s), movement ability (hind limb paralysis), reactivity, and
weight loss (>20 %). Refer to supplemental methods for organ har-
vesting and cell processing procedures. All procedures were approved by
and conducted in accordance with uOttawa animal guidelines.

2.12. Statistical analysis and graph generation

Graphs and statistical analysis were generated using GraphPad Prism
5 (Dotmatics). Two-way analysis of variance (ANOVA) followed by a
Bonferroni post-hoc test was used to test the means of multiple groups.
One-way ANOVA, followed by Tukey post-hoc test, and unpaired two-
tailed t-test were used to test the means between two or more groups,
respectively. Survival curves were compared using the Log-rank
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(Mantel-Cox) test. Graphs with log(10) y-axis were transformed to log
values before analysis. Where indicated, R software (v.4.4) was used to
statistically analyze IVIS tumour burden and weight for more than two
groups. Using the lme4 package (v1.1-36), log transformed tumour
burden and linear weight loss (normalized to baseline) were modeled
using a linear mixed effects model with time as a cubic polynomial
interacting with treatment and random intercepts and slopes for
repeated measures. Comparisons of group means were conducted with
the emmeans package (v1.10.7) using the Tukey post-hoc test. Statistical
significance for all analyses was defined as p < 0.05.

3. Results

3.1. Anti-BCMA-CAR-IL-15 expression enhances NK92 effector function
against myeloma cells

We first generated novel a-BCMA CAR constructs using a modular-
ized CAR plasmid similar to that previously reported [28]. The CAR
construct consists of an o-BCMA-VHH [27,28], 4-1BB and CD3(
signaling domains linked to either a NeonGreen fluorescent tag
(a-BCMA-CAR) or the human IL-15 cytokine (a-BCMA-CAR-IL15) via a
P2A sequence (Supplementary Table S1). A control GFP-IL15 construct
was also generated (Fig. 1A). Lentiviral transduction of NK92 cells
(Fig. 1B) showed a single population of GFP and CAR with GFP-IL15 and
a-BCMA-CAR-IL15 virus, respectively. A double GFP*/CAR" population
was observed when transduced with a-BCMA-CAR-GFP, indicating that
both CAR and mNeonGreen reporter are well translated under the EFS1a
promoter.

We next evaluated the effector function of our engineered NK92 cells
against the BCMA-negative leukemia (NALM6) and BCMA-high multiple
myeloma (MM.1S) target cell lines (Fig. 1C). IFNy and CD107a expres-
sion of CAR+ NK92 cells was significantly increased compared to CAR-
NK92 when co-incubated with the BCMA-high MM.1S cell line (Fig. 1D,
Supplementary Fig. S2). There was no difference in functional cytokine
expression between CAR- and CAR+ NK92 cells when incubated alone
or with the BCMA-negative NALM6 control cell line. To assess the
cytotoxicity of NK92 cells, we incubated CAR- or CAR+ NK92 cells with
BCMA-high MM.1S cells that express NuclightRED and measured the red
fluorescence of MM.1S growth over 48 h (Fig. 1E). CAR+ NK92 cells
were able to prevent MM.1S growth while there was no significant dif-
ference between the growth of MM.1S alone or when incubated with
CAR- NK92 cells.

Given the critical role of human IL-15 in NK cell survival and pre-
vious clinically successful CAR-NK strategies [22], we investigated
whether introducing the human IL-15 gene could maintain NK cell
survival in vitro without conventional exogenous IL-2 cytokine supple-
mentation. Unmodified (WT) and a-BCMA-CAR NK cells died by D5,
whereas GFP-IL15 and a-BCMA-CAR-IL15 NK cells maintained their
viability without exogenous cytokine support in the NK92 cell line
(Fig. 1F). When IL-15-positive NK92 cells were cultured long-term
without IL-2, we saw a preferential selection of transduced NK92 cells
(Supplementary Fig. S3A and B). Taken together, a-BCMA-CAR-IL-15
expression increases NK92 effector function against multiple myeloma.
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Fig. 1. a-BCMA-CAR-IL15 enhances NK92 effector function and cytotoxicity. (A) The design of GFP-IL15, a-BCMA-CAR and a-BCMA-CAR-IL15 constructs; (B)
GFP and CAR expression of transduced NK92 cells measured by flow cytometry; (C) BCMA expression of target cell lines measured by flow cytometry; (D) IFNy and
CD107a functional comparison of a-BCMA-CAR negative (CAR-) or positive (CAR+) NK92 cells against BCMA-neg (NALM6) or BCMA-high (MM.1S) target cells. n =
3 biological replicates; (E) The red fluorescent fold change of MM.1S NuclightRED cell growth when incubated with CAR- or CAR+ NK92 cells over 48 h. CAR-/+
groups are compared to the MM.1S target alone. n = 2 biological replicates; (F) The viability of NK92 WT or NK92 cells transduced with a-BCMA-CAR, GFP-IL15 or
a-BCMA-CAR-IL15 NK92 was assessed over 5 days without exogenous cytokines. n = 2 biological replicates. All data represent mean + SEM. ns, non-significant; *p

< 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

3.2. Anti-BCMA-CAR-IL-15 expression enhances anti-myeloma activity
of primary NK cells

We next corroborated whether our a-BCMA-CAR construct also
augments the effector function of primary NK (pNK) cells against
myeloma cells in vitro. pNKs were enriched from human PBMCs and
expanded for 7 days using irradiated feeder cells and cryopreserved to
generate a pNK master stock. Master stock pNKs were thawed, trans-
duced and expanded for an additional 13 days, for a total of 21 days of
expansion from PBMC isolation (Supplementary Fig. S1). pNK cells
transduced with GFP-IL15 or a-BCMA-CAR-IL15 constructs showed
single GFP or CAR populations while a-BCMA-CAR-GFP transduction
showed a double GFP"/CAR™ population at full expansion (Fig. 2A).
Similarly to NK92, CAR+ pNK cells significantly increased IFNy and
CD107a expression compared to untransduced (UT) pNKs when incu-
bated with BCMA-high MM.1S cells, whereas IFNy and CD107a
expression was minimal or non-significant when BCMA-negative
NALMSG6 cells were used (Fig. 2B, Supplementary Fig. S4A). When we
assessed primary NK cytotoxicity using the live-cell IncuCyte imager
(Fig. 2C, Supplementary Fig. S4B), the growth of MM.1S cells was
effectively controlled by CAR+ pNK cells while it remained unaltered

when MM cells were incubated alone or with untransduced pNK cells.
Interestingly, both UT and CAR+ pNK cells from donor 3 suppressed
MM.1S growth, indicating donor-dependent variation in unmodified
pNK anti-myeloma cytotoxicity. Consistent with the results observed in
NK92 cells, incorporation of the human IL-15 gene protected primary
NK cells (from two donors) from cell death in vitro without IL-2 (Fig. 2D).
Notably, when we compared the anti-myeloma cytotoxicity of primary
NKs in the absence of IL-2 over 48 h, only a-BCMA-CAR-IL15 pNK cells
effectively controlled MM.1S growth (Supplementary Fig. S5). Overall,
these results indicate that a-BCMA-CAR-IL15-expressing NK cells hold
strong potential for effective anti-myeloma treatment in vivo.

3.3. a-BCMA-CAR-IL15 pNK cells inhibit myeloma growth while
maintaining persistence in vivo

To evaluate the persistence and anti-myeloma cytotoxicity of
a-BCMA-CAR-IL15 pNK cells in vivo, we injected 2.5 x 105 MM.1S cells
expressing firefly luciferase (MM.1S-FLUC) intravenously (i.v.) into NSG
mice. After 2 days post-MM injection, the mice received a single dose of
5 x 10° untransduced (UT), GFP-IL15, a-BCMA-CAR or a-BCMA-CAR-
IL15 primary NK cells intravenously (Fig. 3A). GFP and CAR expression
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Fig. 2. a-BCMA-CAR-IL15 augments primary NK cell effector function and cytotoxicity in vitro. (A) GFP and CAR expression of untransduced or transduced
primary NK (pNK) cells measured by flow cytometry represented by one donor; (B) IFNy and CD107a functional comparison of untransduced (UT) or a-BCMA-CAR-
positive (CAR+) pNKs against BCMA-neg (NALM6) or BCMA-high (MM.1S) target cells. n = 3 donors; (C) The red fluorescent fold change of MM.1S NuclightRED cell
growth when incubated with UT or CAR+ pNK cells over 32 h. n = 2 donors; (D) The viability of untransduced, a-BCMA-CAR, GFP-IL15 and a-BCMA-CAR-IL15
primary NK cells was assessed over 5 days without exogenous cytokines. n = 2 donors. All data represent mean + SEM. ns, non-significant; *p < 0.05; **p < 0.01;
**¥p < 0.001; ****p < 0.0001. UT: untransduced.
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Fig. 3. The anti-myeloma comparison of untransduced, GFP-IL15, a-BCMA-CAR and a-BCMA-CAR-IL15 primary NK cells. (A) Schematic experimental
timeline in which 2.5 x 10° luciferase-expressing MM.1S multiple myeloma cells were injected (i.v.) into NSG mice, followed by a single injection (i.v.) of 5 x 10®
total untransduced, GFP-IL15, a-BCMA-CAR or a-BCMA-CAR-IL15 primary NK cells 2 days later (n = 5); (B) CAR and GFP expression of primary NK cells on the day
of injection; (C-D) The tumour burden of each group was measured on days 7, 11, 18, 25, 32, 39 and 42 using IVIS and the total bioluminescent signal was
quantified. Statistical analysis was performed using R software as described in the methods; (E) The percent weight change of mice was monitored weekly. Statistical
analysis was performed using R software as described in the methods; (F) The phenotype and number of human CD45" primary NK cells in the blood, spleen and
bone marrow at day 36 or 42 endpoint; (G) The phenotype and number of MM cells in the bone marrow at day 36 or 42 endpoint. MM cells were identified as CD38"/
CD138™*¢d after gating on the human CD45 and mouse CD45.1 negative population (hCD45/mCD45.1°). Representative images of the mouse femur depicting the
colour of the bone marrow at endpoint. The contrast of all femur images was increased by 20 % in PowerPoint. All 5 mice from each group were sacrificed at day 36
or 42 endpoint and lymphocytes were harvested from the blood, spleen and bone marrow for flow staining. All data represent mean =+ SD. ns, non-significant; *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. D: days; UT: untransduced; HLP: hind-limb paralysis; BM: bone marrow; MM: multiple myeloma.
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were confirmed to be >73 % on the day of injection (Fig. 3B). Biolu-
minescent luciferase signal was measured to assess MM.1S tumour
growth (Fig. 3C and D), while mouse weight (Fig. 3E) and mobility
assessment (hind limb paralysis, HLP) was used to determine an ethical
endpoint. Based on in vivo bioluminescent imaging, we observed com-
parable MM growth localized to the spine, hips, and head of untreated,
UT pNK and GFP-IL15 pNK-treated mice starting at day 18 (Fig. 3C and
D), whereas MM growth was delayed by 7 days in mice treated with
a-BCMA-CAR pNK cells. Importantly, a-BCMA-CAR-IL15 pNK cell
treatment nearly completely suppressed MM growth until day 39. Pe-
ripheral blood analysis revealed that the number of IL-15-negative pNK
cells (UT and a-BCMA-CAR) was negligible, whereas IL-15-expressing
PNK cells (GFP-IL15 and a-BCMA-CAR-IL15) expanded ~3.2-fold by
the endpoint (Supplementary Fig. S6A). When assessing pNK cell
phenotype in vivo, we observed a selection of GFP and a gradual decrease
in CAR MFI over time (Supplementary Fig. S6B).

Untreated, UT pNK and GFP-IL15 pNK mice reached humane
endpoint on day 36, whereas mice treated with a-BCMA-CAR pNK cells
reached humane endpoint on day 42 post-MM injection. Mice treated
with a-BCMA-CAR-IL15 pNKs did not reach their humane endpoint but
were sacrificed on day 42 for comparative analysis. When quantifying
hCD45" and mCD45.1" pNK cells in the blood, spleen and bone marrow
of treated mice at their endpoints, we found a negligible number of IL-
15-negative pNK cells in the blood and less than 1 x 10° pNKs per
spleen or femur (Fig. 3F). GFP-IL15 and a-BCMA-CAR-IL15 pNK cells
were found in similar amounts in the blood and the spleen. Notably, the
quantity of a-BCMA-CAR-IL15 pNK cells in the bone marrow at the
endpoint was ~4.7-fold more than IL-15-negative BCMA-CAR pNK and
10-fold more than GFP-IL15 pNK-treated mice (Fig. 3F). We found
prominent CD38" and CD1 3gmixed pryv populations in the bone marrow
of untreated, UT pNK, GFP-IL15 pNK and a-BCMA-CAR pNK-treated
groups (Fig. 3G), which was easily noticed by the unusual white
colour of the BM within the femur. Remarkably, a-BCMA-CAR-IL15 pNK
cells dramatically reduced MM growth when compared with other pNK
treatments, which was corroborated by the preservation of healthy red
BM. Taken together, a single dose of a-BCMA-CAR-IL15 pNK cells
significantly inhibited MM growth in vivo and confirms that the inclusion
of both CAR and the IL-15 gene is necessary for therapeutic efficacy and
in vivo persistence of a-BCMA-CAR-IL15 pNK cells.

3.4. a-BCMA-CAR-IL15 pNK treatment prolongs survival but allows for
extramedullary disease

Since a-BCMA-CAR-IL15 pNK treatment did not reach the endpoint
on day 42, we next sought to assess the anti-myeloma activity of
a-BCMA-CAR-IL15 pNK cells over a longer period of time. Similarly as
above, MM.1S-FLUC-bearing mice were treated 2 days later with 3 x 10°
a-BCMA-CAR-IL15-positive pNKs in separate experiments using two
independent pNK donors (Fig. 4A and B). During the course of these
experiments, the IVIS imaging system was upgraded from the IVIS
Spectrum to Newton 7.0 FT500. In both experiments, untreated mice
exhibited rapid MM progression in osseous regions of the spine, hips and
head and reached an ethical endpoint due to HLP between day 36 and 38
(Fig. 4C-E). In contrast, a-BCMA-CAR-IL15 pNK treatment inhibited MM
growth until day 40, after which localized tumour growth, mostly
outside of osseous regions, was observed. Despite the onset of localized
tumours in various anatomical regions, treated mice did not show
adverse clinical symptoms such as weight loss or hind-limb paralysis,
and were sacrificed between day 58 and 73 due to high bioluminescent
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signal in localized regions or the presence of palpable tumours. At the
endpoint of both experiments (Fig. 4F and G), untreated mice were
found to have a mix of mouse lymphocyte and MM cells in the blood
with >95 % MM cell engraftment in the bone marrow. Remarkably,
a-BCMA-CAR-IL15 pNK-treated mice had <5 % MM in blood and <1 %
in the bone marrow. These findings suggest that a-BCMA-CAR-IL15
PNKs effectively kill MM in the bone marrow.

At sacrifice, mice were autopsied and a total of 20 extramedullary
tumours were found in 13 mice who received a-BCMA-CAR-IL15 pNK
treatment (Fig. 4H). In humans, myeloma extramedullary disease is
currently divided into two classifications: (1) paraskeletal plasmacyto-
mas (PPs), which are tumour masses in direct contact with the bone and
(2) extramedullary plasmacytomas (EMPs), which are soft-tissue tumour
masses that result from hematogenous spread without bone contact
[32]. From all mice in both experiments, 2 tumours were PPs while 18
were EMPs. The plasmacytomas weighed 1019 + 897.1 mg and
measured 724.8 + 634.5 mm? (Fi g. 4I), not exceeding ethical tumour
limits for subcutaneous tumour models, except for one mouse. Pheno-
typing by flow cytometry revealed that 80 + 17.6 % of the plasmacy-
tomas were MM cells with tumour-infiltrating CD45" pNK cells present
in all samples, with a mean of 1.8 £ 3.1 % (Fig. 4J). Importantly, BCMA
expression levels of MM cells within plasmacytoma solid tumours of
CAR-NK-treated mice were comparable to MM cells from the bone
marrow of untreated mice (Fig. 4K), suggesting that BCMA down-
modulation was not the mechanism of tumour evasion. Taken together,
a-BCMA-CAR-IL15 pNK treatment readily eliminates MM in the bone
marrow, leading to significantly prolonged survival. However, CAR-NK
cell treatment failed to prevent the onset of MM extramedullary disease.

3.5. Consecutive a-BCMA-CAR-IL15 pNK treatment does not prevent
extramedullary disease

Since we observed MM extramedullary disease six weeks post-MM
injection along with CAR downregulation in mice treated with
a-BCMA-CAR-IL15 pNK cells (Supplementary Fig. S6B), we reasoned
that CAR downregulation might be the primary cause of extramedullary
disease development. Thus, we tested whether consecutive a-BCMA-
CAR-IL15 pNK treatments could prevent relapse. 4.8 x 10% a-BCMA-
CAR-IL15-positive pNKs were injected 2 days post-MM injection, and
leftover pNK cells were immediately frozen for future BCMA-CAR-IL15
treatments (Fig. 5A and B). We verified that frozen a-BCMA-CAR-IL15
PNKs still significantly inhibited MM growth, although their efficacy
was slightly reduced compared to fresh a-BCMA-CAR-IL15 pNKs
(Supplementary Fig. S7A-C). MM growth was monitored and a second
a-BCMA-CAR-IL15 pNK treatment was administered before plasmacy-
tomas were detected on day 25 post-MM injection (2x CAR-IL15 pNK)
(Fig. 5C and D). Despite the administration of consecutive a-BCMA-CAR-
IL15 pNK treatment (2x), there was no difference in MM growth (Fig. 5C
and D) or weight (Fig. 5E) compared to the cohort treated only once
(1x). Consistent with previous in vivo experiments, there was a drastic
reduction in MM cells within the bone marrow of CAR-IL15 pNK-treated
mice compared to untreated mice at the endpoint; however, there was
no significant difference in bone marrow MM cell engraftment between
1x and 2x CAR-IL15 pNK treatment (Fig. 5F). An equal number of
plasmacytomas were found with both single or consecutive a-BCMA-
CAR-IL15 treatments, with 1/3 being PPs (1x pNK, mouse 4 and 2x pNK,
mouse 1) with the remaining being EMPs (Fig. 5G). There was no dif-
ference between single or consecutive CAR-IL15 pNK treatments when
assessing plasmacytoma weight, volume, MM percent composition
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Fig. 4. The long-term anti-myeloma cytotoxicity of a-BCMA-CAR-IL15 primary NK cells. (A) Schematic experimental timeline in which 2.5 x 10° luciferase-
expressing MM.1S multiple myeloma cells were injected (i.v.) into NSG mice, followed by a single injection (i.v.) of 3 x 10° a-BCMA-A6-CAR-IL15-positive primary
NK cells 2 days later; (B) CAR expression of primary NK cells from two donors on the day of injection; (C) The tumour burden from two separate experiments were
measured weekly using IVIS and the total bioluminescent signal was quantified. Mouse 2, experiment 1 on day 53 was not injected with firefly-luciferin properly
during initial imaging. It was re-injected and imaged separately on the same day; (D-E) The total bioluminescent signal over time and the percent survival of mice
from two experiments. Mice were sacrificed between day 58 and 73 (median survival: 68 days in experiment 1, 62 days in experiment 2); (F) The percentage of MM
cells in the bone marrow at mouse endpoint combined from both untreated and a-BCMA-CAR-IL15 pNK-treated experiments. MM cells were identified as CD38%/
CD138™*¢d after gating on the human CD45 and mouse CD45.1 negative population (hCD45/mCD45.17); (G) Percent composition of mouse lymphocytes
(mCD45.17), multiple myeloma cells (CD38+/CD138mi"Ed), and pNK cells (hCD457) in the blood and bone marrow at endpoint combined from both experiments.
a-BCMA-CAR-IL15 pNK-treated mice had <5 % MM in blood and <1 % in the bone marrow, with a moderate amount of pNK cells remaining in the blood (28.9 +
39.7 %); (H) Images of tumours identified in a-BCMA-CAR-IL15 pNK-treated mice at endpoint. Mouse number refers to the visualized mice in panel C, starting from
left to right of the CAR-IL15 pNK-treated groups; (I) Total tumour weight and volume measurements for each mouse; (J) Percent composition of mouse lymphocytes
(mCD45.1"), multiple myeloma cells (CD38" /CD138™*°d) and PNK cells (hCD45") within the tumours; (K) BCMA expression of MM cells from blood, spleen and
bone marrow from untreated mice and plasmacytoma tumours from a-BCMA-CAR-IL15-treated mice. Mice were sacrificed on different days depending on when they
reached a humane endpoint. All mice were autopsied for plasmacytomas, followed by the collection of lymphocytes from the blood, spleen, bone marrow and
plasmacytomas for flow staining with the exception of CAR-IL15-treated mouse #5, experiment 1. All data represent mean + SD. ns, non-significant; *p < 0.05; **p

< 0.01; ***p < 0.001; ****p < 0.0001. D: days; HLP: hind-limb paralysis; BL: blood; SP: spleen; BM: bone marrow; TU: tumour; MM: multiple myeloma.

(>83 %) and BCMA expression (Fig. 5H-J). Taken together, consecutive
treatment with CAR-IL15 pNKs was unable to prevent the emergence
and growth of plasmacytoma tumours.

4. Discussion

Multiple myeloma (MM) is identified by the uncontrolled prolifera-
tion of malignant plasma cells [3]. Despite remarkable improvements in
the median survival for patients diagnosed with MM over the past two
decades, the relapse rate remains high, emphasizing the need for novel
therapies. FDA-approved CAR-T immunotherapies targeting BCMA on
MM cells are limited by autologous transfusions, high cost and limited
patient access [10,11,33]. Allogeneic a-CD19-CAR NK cells have shown
potential in leukemia and lymphoma clinical trials, allowing
off-the-shelf treatment with minimal side effects [14,34]. While some
a-BCMA-CAR-NK phase I/II clinical trials have started recruitment
(Clinical trials: NCT05182073, NCT06045091, NCT06242249,
NCT06594211), no long-term in vivo MM studies have been reported. In
our study, we evaluated both the short and long-term effects of
a-BCMA-CAR-IL15 primary NK cells in a MM xenograft mouse model to
fully understand the strengths and weaknesses of these newly emerging
treatment modalities.

In our in vivo MM model with NK cell treatment, we present defini-
tive evidence that both IL-15 and a-BCMA-CAR are essential for effective
MM disease control. The increased anti-myeloma activity of CAR-IL15
versus CAR NK cells is corroborated by several studies against various
cancers [35-39]. The survival of MM-bearing mice after
BCMA-CAR-IL15 NK cells (days 58-73) presented in our study aligns
with other BCMA-CAR-NK studies, which also had similar endpoints
between days 57-70 [38,39]. Notably, our study is the first to monitor
bioluminescent MM growth long-term after CAR-NK treatment.
Although IL-15 co-expression promotes CAR-NK cell persistence, we did
not observe any toxicity related to uncontrolled expansion of
IL-15-expressing CAR-NK cells [37,40]. Notably, CAR downmodulation
was observed on persisting IL15-expressing CAR-NK cells in the pe-
ripheral blood. Since we designed our construct to express CAR and
IL-15 simultaneously, pNK persistence suggests that IL-15 was still
produced and utilized by NK cells, but a-BCMA-CAR could no longer be
expressed on the cell surface. A similar CAR downmodulation in an
a-CD19-CAR T cell product was improved by modifying CAR cyto-
plasmic residues to prevent lysosomal degradation upon CAR internal-
ization, thereby allowing recycling of CARs back to the cell surface [41].
In addition, we recently showed that treating with the histone deace-
tylase inhibitor, entinostat (ENT), during NK expansion enhanced
a-CD138-CAR expression and improved anti-myeloma function in vitro
and in vivo [42].

Given the remarkable MM inhibition achieved with our a-BCMA-
CAR-IL15 treatment, we next assessed the long-term anti-myeloma

potential of our therapy. Treatment with a-BCMA-CAR-IL15 NK cells
improved survival, but we observed the emergence of extramedullary
disease (EMD) as evidenced by localized MM growth in the form of MM
plasmacytomas. While we did not observe similar MM-EMD in untreated
mice, we believe this is likely due to the rapid MM growth in the bone
marrow, leading to a swift decline in mouse condition and hind limb
paralysis before such EMD can become apparent. Regardless, this study
does show that a-BCMA-CAR-IL15-expressing NK cells have a limitation
in controlling MM-EMD specifically. Notably, consecutive a-BCMA-
CAR-IL15 NK treatments could not prevent the onset of EMD.

The diagnosis of EMD in the clinic is rapidly increasing due to longer
patient survival with modern therapies and improved imaging tech-
niques [43-45]. The incidence of EMD with newly diagnosed MM
(NDMM) patients ranges from 0.5 to 6 % whereas relapsed/refractory
MM (RRMM) patients range from 3.4 to 15 % [23,32,46-48]. In our in
vivo mouse model of MM treated with «-BCMA-CAR-IL15 NK cells, EMD
developed in 76 % of mice. The majority of long-term in vivo studies
treating MM-bearing NSG mice with cell-based immunotherapies (NK or
T cells) do not show bioluminescent MM growth long-term (<50 days)
nor indicate the presence or absence of EMD at sacrifice [39,49-52]. To
our knowledge, the study of Thangaraj et al. [53] was the only other
long-term study that reported MM-EMD emergence in organs and
quantified the number of plasmacytomas at endpoint, though without
conducting phenotyping.

The use of immunocompromised NSG mice without a full immune
system may limit the clinical translation of our model [54,55]. The
function and persistence of CAR-NK cells, as well as the incidence of
EMD may not be reflected when transitioning this therapy to the clinic
with a human immune system. Unfortunately, current humanized
mouse models either limit MM engraftment and fail to re-capitulate MM
disease progression and pathology [56,57] or are not readily available
[58]. While the gold standard for clinical translation would be a fully
humanized multiple myeloma (MM) mouse model incorporating human
PBMCs together with matched patient-derived MM cells, obtaining
paired samples from the same patient for an autologous setting remains
ethically challenging. In addition, patient-derived MM cells typically
exhibit low and inconsistent engraftment efficiency within murine bone
marrow microenvironments. Instead, xenograft models using immuno-
compromised mice engrafted with human MM cell lines continue to
serve as the standard and practical preclinical platform for evaluating
CAR-based immunotherapies [39,49-53,59]. There has been some
progress with NSG mice expressing human IL-6 to support a primary MM
xenograft model [60] but ex vivo expansion of patient-derived MM cells
remains limited [61,62].

Recent data from BCMA-CAR-T cell treatments strongly corroborate
our results. MM studies following BCMA-directed CAR-T cell therapy
indicate roughly 50 % of relapses involve EMD throughout the body in
tissues such as the lymph nodes, lungs/pleura, muscles, central nervous
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mean bioluminescent signal was quantified. ®-BCMA-CAR-IL15 pNK-treated mice were imaged on day 25, followed by randomization for the CAR-IL15 NK-treated
groups. Bioluminescent images for day 25 are organized into their new groups to follow MM growth progression. (E) The percent weight change of mice was
monitored weekly; (F) The percentage of MM cells in the bone marrow at mouse endpoint. MM cells were identified as CD38"/CD138™**! after gating on the human
CD45 and mouse CD45.1 negative population (hCD45/mCD45.17). (G) Images of tumours identified in a-BCMA-CAR-IL15 pNK-treated mice at endpoint. Mouse
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surements for each CAR-IL15 pNK-treated group; (I) Percent composition of mouse lymphocytes (mCD45.1"), multiple myeloma cells (CD38*/CD138™*%), and pNK
cells (hCD45™) within the tumours. (J) BCMA expression of MM cells from tumours of BCMA-CAR-IL15-treated mice. Untreated mice were sacrificed on day 38 and
CAR-IL15 pNK-treated mice were sacrificed on day 52-53. 4 untreated, 5 (1x) CAR-IL15 pNK-treated and 4 (2x) CAR-IL15 pNK-treated mice were autopsied for
plasmacytomas, followed by the collection of lymphocytes from the bone marrow and plasmacytomas for flow staining. All data represent mean + SD. ns, non-
significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. D: days; HLP: hind-limb paralysis; MM: multiple myeloma.
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system, ears/nose/throat, gastrointestinal, skin, urinary system and
liver [45,63,64]. 43 % of patients with EMD relapse after CAR-T cell
therapy remained MM-negative in the bone marrow, showing that bone
marrow minimal residual disease (MRD) does not adequately represent
overall disease control post-CAR T [64], which is consistent with our
results. Moreover, the presence of EMD before CAR-T therapy presents
an even greater challenge. Patients with pre-existing EMD have poorer
outcomes, including reduced overall response rates, shorter
progression-free survival, and lower overall survival [65,66]. EMD is
considered an independent adverse prognostic factor which often re-
flects aggressive disease with high-risk cytogenetics in CAR-T therapy
[23,67]. It suggests that extramedullary compartments may serve as an
immunosuppressive tumor microenvironment, prohibiting CAR-T cell
infiltration, persistence and effector function. Factors such as
myeloid-derived suppressor cells, BCMA downregulation, and clonal
evolution might contribute to immune escape and resistance [65].
Likewise, in our CAR-NK study, extramedullary tumours showed mini-
mal pNK infiltration (<10 %). Notably, we did not observe BCMA
downregulation on EMD-MM cells, indicating that antigen loss is not the
primary mechanism driving EMD in our model. Interestingly, a phase 1
trial of bispecific BCMA + GPRC5D CAR-T achieved a 100 % response
rate even with all RRMM patients with EMD [68], suggesting that novel
strategies such as dual-target CAR constructs might address the chal-
lenge of antigen escape in EMD. Moreover, daratumumab (anti-CD38
monoclonal antibodies) [53,69] or bi-specific NK cell engagers (BiKEs)
[70,71] could be used in synergistic combination with CAR-NK cells.

In conclusion, a-BCMA-CAR-IL15 primary NK treatment persisted in
vivo and strongly inhibited MM growth in the bone marrow, with su-
perior efficacy compared to IL15-negative pNKs. Long-term monitoring
showed effective restriction of MM growth in the blood and bone
marrow with greatly prolonged survival. However, CAR-NK therapy
could not limit extramedullary disease relapse. Importantly, this
consistent in vivo EMD model would offer a valuable opportunity for
investigating novel combinational therapies against a highly aggressive
form of MM, thereby promoting the development of affordable and
accessible immunotherapies for patients.
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