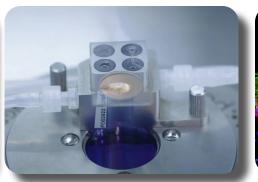


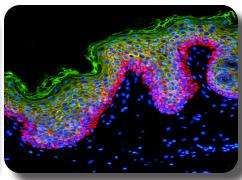
BIOPRINTER NGB-R

The NGB-R is a multi-modal, 3D bioprinting platform designed and developed to print live tissues and organs. Combining laser-assisted and extrusion bioprinting, the NGB-R enables true versatility of bioprinting (from cells to multi-cellular spheroids) and offers the possibility of using a large number of biomaterials and hydrogels.

The NGB-R includes an embedded microscope for in-line cell printing monitoring and relies on a complete software suite for managing bioprinting protocols, from biological CAD to data analysis of manufacturing.

The Next Generation Bioprinting NGB-R platform from Poietis has been developed to overcome current tissue manufacturing shortfalls and solve critical limitations of existing 3D bioprinting technologies, thanks to single-cell resolution and learning-based methods. This platform integrates automation and robotics, and numerous online sensors – including cell microscopy – and Artificial Intelligence processing.





Applications

Regenerative Medicine Advanced Therapies:	Regenerative medicine is a rapidly growing field that involves replacing or regenerating damaged or diseased cells, tissues or organs to restore normal function.
Drug Discovery & Therapeutic Testing:	3D Bioprinted human tissues can bridge the gap in testing of therapeutics from preclinical animal models to in-human trials. In addition, the use of bioprinted tissue models allow for high-throughput screening of drugs.
Disease Modelling:	3D Bioprinting can be used to fabricate <i>in vitro</i> 3D disease modes, mimicking the structural and spatial features of the disease environment. This can be used to study the disease mechanism and test therapeutics.
Aesthetic Medicine & Cosmetic Testing:	3D Bioprinted tissues can replace animal models for testing of cosmetic products. 3D bioprinted tissue fabricated out of human cells are more ethical for validation of aesthetic products.

Features & Specifications

Unique Software Suite:

Multi-Modality, Laser- Assisted, Bio-extrusion Bioprinting:	The NGB-R incorporates 3 different bioprinting techniques all in one system: Laser-assisted-bioprinting (LAB) Bio-extrusion
High Cellular Viability: (>95%)	NGB-R's laser-assisted bioprinting technology is nozzle-free technique with no damage causing forces occurring in the process. As a result, cell viability reaches >95% and printed tissues become truly functional.
High-resolution, Precision and Printing Speed:	NGB-R is the first commercially available laser-assisted bioprinting system, allowing users to deposit micro droplets of cell bioink with a precision of a few microns at predesigned patterns.
Integrated Microscopy & Image Analysis Platform:	The NGB-R can come with an optional built-in microscope to acquire images of each individual tissue layer at each step of fabrication.
Microfluidic Cartridge:	This optional module includes a microfluidic cartridge and an automatized pipette for homogenization and multi-cellular loading
6 Axis Robotic Arm:	NGB-R is designed to address automation and reproducibility issues in tissue manufacturing; 6-axis robotic arm integrated within NGB-R allows semi to fully automated fabrication.

Unique user-friendly HMI software Zebr4D™ to design complex tissues.