Scintica:

PRODUCT BROCHURE

Preclinical Research Technologies & Solutions

WWW.SCINTICA.COM

ABOUT US

OUR PARTNERS

Making your research simpler and more productive

At Scintica, we are dedicated to advancing science and medicine by supplying top-notch instrumentation to scientists and the preclinical research community. With our carefully selected portfolio of preclinical imaging and other products, we strive to connect researchers with the high value research tools necessary for the complicated process of scientific research.

Our Mission

We are dedicated to advancing science and medicine by supplying top-notch instrumentation to scientists and the preclinical research community. We strive to connect researchers with the most suitable research solutions and tools, empowering them to make meaningful contributions to their field and drive progress.

We are Scientists

Our team of scientific experts is here to help you find the right solution to advance your research.

Our Goals

We are committed to delivering cutting-edge instrumentation, tools. and research solutions to the preclinical research and translational medicine communities.

Building connections within the research community is a top priority for us. As such, one of our core values is keeping scientists informed about the latest ground breaking technologies in their field.

Providing exceptional support to our customers and assisting them in finding the best research solutions is one of our primary goals. We strive to consistently deliver outstanding customer service.

CONTENTS

PRECLINICAL IMAGING

HIGH-FREQUENCY ULTRASOUND - PROSPECT TI	03-04
DEXA - iNSiGHT	07-08
ECHO MRI - NIUMAG QMR06	09
Micro CT - DELab µCT-100	10
Micro CT - DELab µCT-100X (Benchtop)	11-12
MRI - M-Series	13-14
PET INSERT - SimPET	15-16
SPECT/PET ISOTOPE SCREENING - EYES SERIES	17-18
SPECT - MH3D	19-20
PET/CT - SUPERARGUS	21-22
PHOTOACOUSTIC TOMOGRAPHY - TRITOM	23-24
OPTICAL (BLI/FLI)- NEWTON 7.0	25-26
OPTICAL (NIR-II FLUORESCENCE)- FLIR 500 & IR 500	27
WESTERN BLOT- FUSION	28
GEL DOCUMENTATION - WESTERN BLOT	29
LASER SPECKLE - RFLSI-ZW	29
MICROBUBBLE CONTRAST AGENTS - USPHERE SERIES	30
INTRAVITAL MICROSCOPY - IVIM SYSTEM	31-32
IMAGING ANALYSIS SOFTWARE SEGMENT VIVOQUANT	33-34
IMALYTICS PRECLINICAL	
RESEARCH ULTRASOUND THERAPEUTIC/RESEARCH ULTRASOUND - PRODIGY	35-36
BIOFABRICATION BIOPRINTER - NGB-R	37-38

CONTENTS

CARDIOVASCULAR FUNCTION

DOPPLER FLOW VELOCITY SYSTEM - DFVS

PHYSIOLOGICAL MONITORING

RODENT SURGICAL MONITOR - RSM+

WORKSTATIONS & INCUBATORS

ANAEROBIC CHAMBERS - BUGBOX AX **ANAEROBIC CHAMBERS - CONCEPT** CELL CULTURE CHAMBERS - INVIVO, **CELL CULTURE CHAMBERS** - SCI-tive **HYPOXIA & ATMOSPHERIC CONTROL** OXYGENIE VELO₂X RECO₂VER CONDOCELL PHOX, BOX PHANTOMS

MICROVASCULAR RESEARCH

PRESSURE ARTERIOGRAPHY WIRE MYOGRAPH

STEREOTAXIC, NEUROSCIENCE & OTHER PRODUCTS

STEREOTAXIC PRECISE IMPACTOR OTHER RESEARCH PRODUCTS

OTHER RESEARCH PRODUCTS

ANAESTHESIA SOLUTIONS

LAB CONSUMABLES

39	
40	
41-44	

_
_

46

•	47
	49
!	50

HIGH-FREQUENCY ULTRASOUND PROSPECT T1

Imaging Modes

in Long Axis

Mouse Left Ventricle

in Short Axis

Tissue Doppler

Mouse Mitral Valve Inflow

Mouse Mitral Valve Annulus

Features & Specifications

Hardware	·	3D Motor		
Add-ons:		Image Guided Injection		
	•	Acoustic Radiation Force Push		
Animal Handling	•	Mouse Platform: 17.2 x 14.2 cm (
Platform:		Rat Platform: 28.3 x 18.2 cm (L x		
		Heated		
		Integration for Anaesthesia nos		
		Temperature Monitoring		
		Respiratory Rate, ECG, and Hea		
Resolution:	•	Up to 30 µm		
Field-of-View: (FOV)	•	Depth up to 39 mm x Width 23		
Frame Rate:	•	Up to 400 fps (EKV Mode)		
System Dimensions:	•	360 x 280 x 65 mm		
Data Format:		Still and movie export: jpg, bmp		
		RAW RF data, with MatLab imp		
		Proprietary format for saved Cir		

The **Prospect T1** is an innovative high-frequency ultrasound system designed for in vivo preclinical imaging in small animals such as mice and rats. This compact and cost-effective tablet-based system provides high-resolution images (up to 30 µm) and advanced capabilities to monitor changes in hemodynamics and observe anatomical structures in real-time.

There are three available probes with frequencies ranging from 10-60MHz. The system comes with all standard imaging modes including B-mode, M-Mode, Power/Color/PW/Tissue Doppler, and Contrast (linear and non-linear/harmonic) imaging mode.

Applications	Probes 40 MHz 50 MHz<			
, ppressione				
Cardiovascular Research	The system offers real-time cardiac and vascular imaging, enabling heart function and blood flow assessment from <i>in utero</i> to adulthood.			
Cancer Research	The system is used in various oncology models, enables non-invasive detection and tracking of tumor growth, assessment of blood flow and molecular changes, and facilitates image-guided procedures.			
Abdominal & Anatomical Imaging	The Prospect T1 offers non-invasive 2D and 3D imaging of abdominal organs, urogenital, musculoskeletal areas, and blood vessels, as well as perfusion assessments.			
Developmental Biology	The Prospect TI, non-invasively enables pregnancy confirmation, embryonic development monitoring, cardiac assessment, and image-guided interventions.			
Ophthalmology	The Prospect T1 is versatile for visualizing eye structures in various species, supporting 3D imaging, Doppler assessment of blood flow, microbubble perfusion evaluation, and image-guided injections.			
Other Species	The Prospect T1 is versatile, and can also be used with other species such as zebra fish, chick embryos, amphibians, bats, hamsters, and more.			

Mouse Mammary Fat Pad Tumor 3D

Mouse Aortic Arch

 $\bigcirc 4$

Mouse Subcutaneous Tumor

Mouse Subcutaneous Tumor

Shear Wave Through Mouse Liver

ECG Gated Kilohertz Visualization

- $L \times W$) W)
- se cone
- rt Rate

Smm

o, tif, DICOM, avi ort scrips heLoop data

- Compact with Small Footprint
- Tablet Design
- Touch Screen
- Intuitive Workflow

PRECLINICAL IMAGING

DEXA (DXA) **INSIGHT**

07

Applications

The **iNSiGHT DXA** system is a state-of-the-art *in vivo* Dual Energy X-Ray Absorptiometry (DXA/DEXA) system designed for preclinical research. The system offers a wide range of measurements, which include bone mineral density, bone mineral content, bone area, tissue area, percentage of fat tissue, weight, percentage of lean tissue, and total weight in grams.

This system is equipped with a fully shielded X-ray cabinet and is optimized for studying small animals such as mice, rats and other small animals up to 5kg. It provides fast and efficient body composition measurements with a scan time of 25 seconds. Combined with its lowdose radiation, makes this ideal for longitudinal studies.

* Representative DEXA images captured on the iNSiGHT system in a mouse model of colitis

Metabolic Disorders	The iNSiGHT system can be used to track and assess disease progression and changes in body composition measurements over time, in response to treatment by measuring changes in fat and lean mass.
Drug Safety & Toxicology	The system can track and assess changes in body composition in response to the administration of a target compound at an effective dose. This can be done by looking for changes in bone mineral density and content, and/or by measuring changes in fat and lean mass over time.
Musculoskeletal Diseases	The system can assess the progression or regression of disease in response to a therapeutic regimen by measuring changes in bone mineral density and content and/or by measuring changes in fat and lean mass over time.
Metabolic Bone Disease & Arthritis	DXA imaging can help understand Arthritis & Metabolic bone diseases better by assessing the various conditions that lead to bone abnormalities, the progression and response to treatment and monitor the progression.
Нурохіа	The iNSiGHT system can assess the changes in body composition measurements in response to hypoxic exposure. The colorimetric image allows

for the differentiation of visceral and subcutaneous fat.

Features & Specifications

Scan Time:	25 Seconds = High-throughput
Easy Data Acquisition:	 No preparation steps other anaesth needed
Low Dose Radiation:	 Minimal ionizing radiation (0.66 mC Longitudinal studies
Scan Area:	 16.5 x 25.5 cm Samples to be imaged from ~0.1 g t
Scan Method:	• Cone beam
Pixel Size:	\cdot $~$ 100 μm at 1.2X,31 μm at 4X with DR
Adjustable field- of-view and resolution:	 Multiple levels of magnification 100 µm – up to 31 µm in Digital Rad Mode
Images:	 X-Ray attenuated image Bone mineral density map Color map
Calculation Parameters:	 From whole animal or sample or by use regions of interest (ROI). Bone Mineral Content (BMC) Bone Mineral Density (BMD) Bone area Tissue area Fat tissue (mass and percentage) Lean tissue (mass and percentage) Total mass
Dimensions:	• 66 x 61 x 113 cm (W x D x H)
Power:	• 110/240 VAC, 50/60 Hz, 200 VA

mGy) =

g to ~5 kg

DR mode

Radiography

user defined

- Small Footprint
- Low Dose Radiation
- Fast Scan Time

PRECLINICAL IMAGING

ECHO-MRI Niumag QMR06

The Niumag QMR06 is a quantitative echo-MRI system designed specifically for awake, small animal body composition measurements.

With no preparation or anesthetic needed, the QMR06 is effective for user friendly quantitative analysis of lean mass, fat mass, and water content.

Echo-MRI quantifies these parameters based on the differences in relaxation times between lean, fat, and water.

The QMR06 provides the following measurements:

- Lean mass (g)
- Fat mass (g)
- Water content (g)

Features & Specifications

Zero Preparation Required

No-hassle method for quantifying body composition with no prior preparation needed, such as anesthesia.

Awake Animal Measurements

Without need for anesthetic, you can measure lean mass, fat mass, and water content in awake animals.

Permanent Magnet Technology

With permanent magnet technology operation and maintenance is simplified with the QMR06.

Non-invasive

With a non-invasive approach for body composition measurements, the QMR06 is ideal for longitudinal studies.

Optional Imaging Mode

The QMR06 has an optional mode to acquire 2D images of the spatial distribution of fat mass.

Applications

- Metabolic Disorders
- Nutrition
- Oncology
- Aging
- Drug/Therapeutic Development

System Models & Specifications				
	QMR06- QMR06- 060H-PRO 090H-PRO			
Magnet Type:	Permanent magnet (0.15 ±0.015 T)			
Animal Size:	10 – 100 g Mouse 10 – 800 g M 0.6 – 6 g Tissue / Rat 0.6 – 6 g Tissue 0.6 – 6 g Tissue			
Scan Time:	> 3 minutes			
Probe Diameter:	Standard - 60 mm Optional - 15 mm	Standard - 60 mm Standard - 90 mm Optional - 15 mm		
Operating System:	Windows 11			

MICRO CT **DELab µCT-100x (Benchtop)**

The DELab micro computed tomography-100X (µCT-100X) is designed specifically for in vivo imaging of small specimens and ex vivo isolated samples. The DELab µCT-100X is a benchtop design and fully self-shielded allowing the placement in small laboratory settings. The DELab µCT-100X has great versatility with adjustable field of views and the MCI-110 model accommodating 4 sample carriers for specimens or samples ranging from 1 µm resolution at 11 mm diameter x 19 mm length to 7.5 µm resolution at 39 mm diameter x 44 mm length.

While the MCI-100 model accommodates 3 sample carriers for specimens or samples ranging from 5 μ m resolution at 19 mm diameter x 35 mm length to 33 μ m resolution at 83 mm diameter x 146 mm length. The DELab μ CT-100X has both 2D and 3D scan modes.

Features & Specifications

CCD X-ray Detector

With a sealed transmission tube and CCD x-ray detector the DELab µCT-100X produces high resolution images.

Phase Contrast Enhancement

With in-line phase contrast imaging technology sharper images of low attenuation samples are achievable.

Adjustable High-resolution Image Acquisition

The system acquire images with a range of resolutions from 1 μm – 7.5 μm (MCI-110) or 5 μm – 33 μm (MCI-100).

Multiple Carriers for Different Applications

The system has a 4-carrier (MCI-110) or a 3-carrier (MCI-100) ideal for isolated samples or zebrafish and similar sized research models.

Stable Image Acquisition

Incorporates a patented carrier that ensures stable 360° rotation of the sample with anti-twist and anti-vibration technology.

Automatic Temperature Regulation

The DELab µCT-100X has automatic internal temperature regulation to maintain consistent conditions for optimal image quality.

Fully Self-shielded Design

A fully self-shielded design makes the DELab µCT-100X ideal for use in shared spaces and does not require additional safety precautions.

10

System Models & Specifications				
	MCI-110 MCI-100 (4 sample carriers) (3 sample carriers			
Scan Method:	Dual energy cone beam			
Sample Size:	Minimum: 11 mm diameter, 19 mm height Max: 39 mm diameter, 44 mm height	Minimum: 19 mm diameter, 35 mm height Max: 83 mm diameter, 146 mm boight		
Field-of- View: (Max W x L)	30 mm x 18.5 mm	97 mm x 72.5 mm		
Image Resolution:	1, 3, 5, 7.5 μm	5, 15, 33 µm		
Operating System:	Windows 11			
Dimensions: (W x D x H)	96 x 95.5 x 67.5 mm (430 kg)	96 x 95.5 x 67.5 mm (433 kg)		
Power:	110/220V ±10%, 50/60Hz, 15A			

MICRO CT DELab µCT-100

The **DELab µCT-100**, micro-computed tomography-100, is designed for *in vivo* imaging of small lab animals and ex vivo isolated samples. The system improves small animal imaging with a 2-second fast scan mode, ultra-high-resolution images, and 3D image reconstruction.

With 3 interchangeable beds suitable for varying animal models and automatic carrier recognition for field-of-view (FOV) adjustment the DELab μ CT-100 is ideal for a wide range of applications with a maximum 80 mm FOV. Ultra-high-resolution mode can achieve 2 µm image resolution.

The DELab μ CT-100 supports both animal and user welfare. It is fully self-shielded and includes animal monitoring that incorporates an LED surveillance camera, physiological monitoring, airflow heating, and anesthesia gas system.

In vivo animal and *ex vivo* sample 3D micro-computed tomography (µCT)

Measurements

- Total volume (TV) (mm³)
- Bone volume (BV)
- Bone mineral density (BMD)
- Ratio of bone and tissue volume (BV/TV)
- Average cortical bone thickness (µm)
- Trabecular bone thickness (µm)
- Number of trabecular bones (Tb. N)
- Ventilation Inspiration and Expiration volume (mm³)
- Ratio of body fat to body volume (BF/TV)

Applications

- Musculoskeletal Disease
- Metabolic Disorders
- Embryonic Development
- Cardiology / Pulmonology
- Food Science
- Geology
- Oncology

🚳 🛷 🔓 🌮 🔗 🍕

Features & Specifications

Fast Scan Mode

Fast scan mode allows a 2 second scan time.

High-resolution Image Acquisition

The DELab µCT-100 can acquire images within a range of resolutions from $2 \mu m - 44.9 \mu m$.

Automatic Animal Bed and FOV Recognition

With One Touch auto-setting, the DELab µCT-100 software recognizes the animal bed size in use and automatically adjusts the field-of-view (FOV).

Multiple Animal Beds for Different Species

The system has rat (80 mm x 200 mm), mouse (40 mm x 200 mm), and *ex vivo* sample (10 mm x 200 mm) bed options for a range of study designs and applications.

Comprehensive Animal Welfare Features

The system has independent controllable heated airflow and anesthesia gas systems for maintaining a stable animal environment. It also has an embedded LED camera for real-time animal monitoring. ECG and respiratory gating are displayed on the interface.

Built-in Syringe Pump

The DELab µCT-100 can automatically inject contrast agents during scanning for enhanced soft tissue imaging.

Fully Self-shielded Design

A fully self-shielded design makes the DELab µCT-100 ideal for use in shared spaces and does not require additional safety precautions.

PRECLINICAL IMAGING

System Modes & Specifications				
	Rat (All beds)	Mouse (All beds)	Ex vivo/ln Vivo	Ultra-high Resolution
Scan Method:	Gantry dual-energy cone-beam CT			
Animal Size:	2-350 g	2-350 g	2-35 g	2-20 g
Scan Time:	2 S (fast-scan) 20 S	2 S (fast-scan) 36 S	111 s	272 s
Field-of- View: (Max W x L)	80 mm x 180 mm	40 mm x 135 mm	23 mm x 90 mm	10 mm x 54 mm
Image Resolution (Reconstruction)	44.9 μm (22.45-180 μm)	22.5 μm (11.25-90 μm)	15 μm (7.5-60 μm)	9 μm (1.5-36 μm)
Dose Rate: (mGy/s in air)	0.57~127 mGy/s	0.7~178 mGy/s	0.8~162 mGy/s	1 0.8~170 mGy/s
Operating System:	Windows 11			
Dimensions: (W × D × H)	880 x 1500 x 1500 mm (950 kg)			
Power:	100-240 V~/50-60 Hz/5.85 A			
Operating Temp:	10-30 °C			

MRI M-SERIES COMPACT MRI

The M-Series™ MRI systems are cryogen/cooling-free, self-shielded, highperformance MRI systems based on permanent magnet technology. The M-Series systems allow preclinical researchers, with or without in-depth knowledge of MR physics, to utilize the gold standard method in soft tissue imaging without the cost, complexity, and technical burden of superconducting MRI systems.

Applications

Anatomy & Morphology	The M-Series systems are adaptable for imaging studies of anatomy, inflammation, metabolic disorders, organ pathology (e.g., liver, kidney), and tissue perfusion with contrasts.
Neurobiology	The M-Series systems are employed to research various neurological conditions like inflammation, stroke, epilepsy, neurodegeneration, tumors, anatomy, cerebral perfusion with contrast-enhanced angiography, molecular imaging using contrasts, and traumatic brain injuries (TBI).
Cancer/Oncology	The M-Series systems come with set T1- and T2- weighted imaging protocols which can be used for rapid tumor detection, tumor phenotyping (necrosis detection), longitudinal assessment of tumor volume for the quantitative assessment of tumor progression and drug response. Functional and molecular imaging approaches, with or without contrast agents, can be further used to characterized tumor microenvironment including vascular haemodynamics and hypoxia.
Cardiovascular Biology	M-Series systems enable diverse cardiac imaging, assessing parameters like volume, ejection fraction, wall characteristics, strain, torsion, and perfusion, including challenging areas like atria. It accommodates easy imaging of the entire heart and vasculature, with contrast angiography, simplifying slice prescription for consistent longitudinal studies.
<i>Ex Vivo</i> Imaging	<i>Ex vivo</i> MRI offers fast high-resolution imaging of formalin-fixed tissues, detecting and quantifying lesions in organs, especially the brain. It aids in guiding histopathological processing for conventional examination, ensuring accurate region of interest analysis, and enabling precise lesion detection and volume quantification.

Multi-modal Imaging

Multi-modal imaging enhances understanding of disease and compound effects. The M-Series supports PET/MRI with the SimPET insert and a custom cassette, allowing simple registration with many other modalities through third party software including Vivoquant and Imalytics (p25-26).

Contrast Agents

TI and T2 contrast agents (Gd, Mn, iron oxide nanoparticles) enable further functional and molecular imaging applications including perfusion imaging with dynamic contrast enhanced (DCE-) MRI, Cardiac MR (infarct size, viability) and stem cells tracking. The M-series provide the optimal magnetic field for molecular imaging with significantly higher signal enhancement at 1T compared to higher field (>3T).

 M3
 MS
 MS
 MS
 MS

 Mice Only
 Mice, Rats & Other Small Animals
 MR7
 Mice, Rats & Other Small Animals
 Mice, Rats & Other Small Animals

Specifications Front End (Magnet)	М3	М5	М7	M12
Dimensions:	1080 x 734 x 734 mm 42.5 x 29 x 29 inches	1133 X 800 x 800 mm 44.6 x 31.5 x 31.5 inches	1320 x 790 x 950 mm 52 x 31 x 37.5 inches	1810 x 1450 x 1710 mm 71.26 x 57.09 x 67.32 inches
Weight:	650 kg / 1,430 lbs	950 kg / 2,095 lbs	1,550 kg / 3,415 lbs	5,500 kg / 12,125 lbs
Magnet Opening Flange Insertion Diameter Inner Bore (H x W):	70 mm / 2.8 inches 50 x 130 mm / 2 x 5.1 inches	No insertion flange in M5 (Bore is open) 76 x 200 mm / 3 x 7.9 inches	97 mm / 3.8 inches 220 x 90 mm / 8.6 x 3.5 inches	184 x 260 mm / 7.2 x 10.2 inches
Imaging Volume:	80 x 80 x 35 mm ³ spheroid	90 x 90 x 60 mm ³ spheroid	120 x 120 x 70 mm ³ spheroid	120 x 130 x 130 mm ³ ellipsoid
B _{o (Tesla)} :	IT	IT	IT	IT

PRECLINICAL IMAGING

14

PRECLINICAL IMAGING

PET INSERT SimPET

- Simultaneous or standalone operation
- Fast installation
- Low maintenance cost
- Low power consumption

The SimPET is a compact and SiPM-based small animal PET system for hybrid (simultaneous) imaging and stand-alone use with high image quality and exceptional PET performance.

PET & PET/MR imaging with a compact design and low power consumption.

Applications

O	ncology	Ne	eurology
•	Cell		Biodistribution of a specific target
	proliferation		Cerebral blood flow
•	Apoptosis		Cerebral metabolic rate
•	Angiogenesis		Availability of specific receptors in the brain
•	Metastasis		Dopamine transmission
•	Gene		Plasma membrane transporters
	expression	.	Receptor binding sites

- Immunology & Infectious Diseases
- Understanding disease progression and . pathogenesis
- Diagnosis of disease, by targeting the • specific pathogenic agent
- Studying therapeutic efficacy of target compounds

Cardiology

- Myocardial perfusion to examine the extent of stenosis and severity of obstruction
- Myocardial metabolism
- Myocardial viability
- Infarct assessment
- Calcium scoring in coronary artery disease
- Inflammation and plaque development for risk stratification

Bone Studies & Other Diseases

Features & Specifications

- Real-time count rate monitoring
- Real-time FastTomo reconstruction
- Flexible list-mode data acquisition

Parameter	SimPET-S	SimPET-X	SimPET-L	SimPET-XL
Axial FOV (cm):	5.5	11	5.5	11
Sensitivity (%):	4.7	8.1	4.0	7.4
Insert inner diameter (cm):	6.0 7.6			7.6
Insert outer diameter (cm):	9.9 11.2			
Spatial Resolution (mm):	<]			
Energy Resolution (%):	10			
Crystal Material:	LSO			
Crystal Dimension (mm ³):	1.2 x 1.2 X 10			

		[¹⁸ F]FDG PET
ES 🧉	Normal	
ی کی	kN model	11
of Prof. Ahn G & Cheon Gi (POSTECH & SNU)	K/Bx	1. 1

- In-line image reconstruction Post reconstruction with MRI-based
- Easy quality control and calibration

16

- PET/MR geometric calibration
- Count rate/activity cross-calibration

PRECLINICAL IMAGING

SPECT/PET eyes Series

The eyes series screening tools are engineered for highthroughput, allowing researchers to process a large number of compounds in a remarkably short time.

Features & Specifications

Re

50

Fra Do

Sn

44

We Les

Art

Ra

An

Co

Eas

|--|

Cancer Research

PET and SPECT can be used in cancer research applications in many ways like confirming the presence of tumors, monitoring the growth/ size of tumors, detecting metastasis, detect the expression of specific biomarkers.

Theranostics

Many PET and SPECT compounds are being made which are considered to be both therapeutic and diagnostic at the same time.

Biomarker Detection

Targeted probes can be used to image specific biomarkers, for example: inflammation angiogenesis, hypoxia, etc.

Pharmacokinetics/Dynamics/ **Biodistribution**

Labelled compounds can be used to detect the pharmacokinetics, pharmacodynamics, and biodistribution of the compound over time after administration to the imaging subject.

al-time imaging: om time zero post ection	Immediate feedback to the user if the injection was successful and the radioisotope can be imaged within the imaging subject.
tive field of view: mm x 100 mm	This field of view is suitable for whole-body mouse imaging, allowing for continuous and dynamic imaging in a single acquisition.
me rates: wn to 10 seconds	Real time, whole body, mouse imaging – these acquisition times would allow the kinetics and dynamic distribution of the imaging compound to be followed over time.
a ll footprint: cm x 46 cm x 40 cm eight: ss than 40 kg	True benchtop system, due to small size, weight and footprint.
-in-one:	Animal handling system with integrated anaesthesia delivery, heated bed, and option to monitor vital signs.
nite Light Image & ificial X-ray:	A white light image is acquired and an artificial x ray is adapted to each imaging subject.
pid Scanning:	The systems provide rapid screening and visualization of the data during acquisition.
alysis Software:	The analysis software is user-friendly and the data can be quickly processed and exported after scan completion.
mplete Lab:	The systems provide a complete solution for your workflow from radio TLC, in vivo imaging, to biodistribution of ex vivo tissue samples.
sy-to-use:	Easy-to-use system and simplified workflow.

Time of flight capabilities enable excellent signal to noise ra

Advanced electronics are integrated within the system.

This system has the capability for tomographic slices.

Minimal maintenance is required.

High precision real-time imaging without the cost of time-consuming post-processing routines.

State-of-the-art technical characteristics:

Sensitivity that reaches 5% Spatial resolution near 1.2 mm Time of flight (TOF) capabilities Energy resolution of 11.8% at 511 keV

Dynamic range from 0.1 – 10 MBq

Exchangeable collimators

The broad detectable energy range of 35 keV-500 keV allows compatibility with a wide variety of isotopes.

The dynamic range from 0.01 to 200 MBq allows significant flexibility in the amount of tracer/energy that can be detected.

A larger field of view version is available which accommodates 4 mice or 1 rat

'e	
atio.	

A benchtop imaging scanner for in vivo screening of PET radioisotopes

18

A benchtop in vivo optical imaging system for fluorescence and bioluminescence imaging

A preclinical scanner for in vivo whole-body mouse imaging of all SPECT isotopes radioisotopes

General purpose collimator High resolution collimator High sensitivity collimator High energy collimator

Sensitivity of 341 cps/MBqww

Spatial resolution up to 1.9 mm

eEnergy resolution below 19%

Dynamic range from 30 keV - 500 keV

Exchangeable collimators

Provides high sensitivity images across the whole field of view, over a broad range of signal intensities.

PRECLINICAL IMAGING

MH3D Alpha-SPECT mini **SPECT**

The Alpha-SPECT mini is a high-performance SPECT imaging system for preclinical research (mice and rats).

It features high performance CZT sensors providing an unparalleled energy resolution.

The scanner offers an ultra-wide stationary FOV to allow for TRU whole-body dynamic scanning of both mice and rats. This allows for imaging up to 4 mice simultaneously.

This is a first in its class SPECT scanner with exceptional sensitivity, resolution, and many unique features.

Applications

Theranostics **Spectral Imaging** Oncology Cardiology **Drug Development Dynamic Development Metabolic & Bond Diseases**

Truly Stationery Spatial FOV Resolution Hi-Res, Mouse D 30 mm × L 40 mm STD: 0.5 mm HR: 0.25 mm Large-FOV, Rat | D 60 mm × L 90 mm 1

Phantom Images

Preliminary Mouse

Experiment 1: Unbonded Ac-225 in mouse, 1.5 µCi

- In vivo Imaging of Ac-225 in mouse
- Unbonded Ac-225, 1.5 µCi total
- Imaging time: 30 mins

100keV, Ac-225

Experiment 3: Ac-225-labelled antibody in tumor

79.3keV, overall

Features & Specifications

Unparalleled Energy Resolution:	E.g., 2.5 keV at 140 keV), Ideally suited for multi-isotope imaging	
Ultra-wide Stationary FOV:	6 cm x up to 12 cm For TRUE whole-body dynamic mouse and rat studies	
Stationary Multi-animal Imaging:	4 mice imaging capability for high throughput	
Ultra-high Spatial Resolution:	0.25 mm	
Modular Design:	Customer-selectable imaging configurations : 6 cm x 6 cm, OR 6 cm x 9 cm cm X 12 cm	and 6
User-programmable Dual-FOV:	Aperture for adaptive whole-body/microscopic imaging	

Sensitivity (cps/MBq)	Energy Resolution @140 keV	Bore Size
STD: 2500 (0.25%) HR: 1500 (0.15%)	STD: 2.5 keV, CZT (UHER: 1.5keV, CdTe)	12 cm
5000 (0.5%)	2.5 keV	12 cm

2C

Tc-99m IQ Phantom Images

Alpha-SPECT-mini with dedicated high-E collimator E-window: ~80 keV, (Pb-209, Fr-221, Tl-209, etc.)

Most of the Ac-225 and daughters appears to go to the bone and kidney

Experiment 2:

Ac-225-labelled antibody in tumor

- Distribution of Ac-225-labeled antibody in tumor
- Energy window: 5 keV around 218 keV (Fr-221)ey

Experiment 3 conditions are identical to Experiment 2

218keV, Fr-221

117keV, TI-209

440keV, Bi-213

PET/CT **SUPERARGUS**

The SuperArgus PET/CT is a high-performance imaging system for preclinical research that can be configured as a combined PET/CT or PET or CT only system. It features state-of-the-art phoswich PET detectors with true depth-of-interaction (tDOI) for resolution uniformity and high sensitivity.

The system offers real-time imaging up to 2.5 ms frame rate and advanced capabilities like sensorless cardiac gating and conscious/awake imaging.

- Real-time Imaging
- Sensorless Cardiac Gating
- Multiplex Imaging (mPET)
- Conscious/Awake Imaging
- Multi-animal Imaging
- Multiplexed Imaging (mPET)

Applications

Oncology	 Cell proliferation Apoptosis Angiogenesis Metastasis Gene expression 	Cardiology	 Myocardial perfusion Myocardial metabolism Infarct Coronary artery disease Inflammation and plaque 	
	· Receptor-ligand interaction		development	
Neurology	 Cerebral blood flow Cerebral metabolic rate Neurological receptors Plasma membrane transporters Receptor binding sites 	Dynamic Imaging 4D/3D	 Time Activity Curves Radiotracer accumulation Biodistribution kinetics 	
Metabolic and Bone Diseases	 Rickets Rheumatoid arthritis Metabolic disorders Osteoporosis Osteomalacia 	Drug Development Theranostics	 Target concentrations Kinetics Biodistribution Multiplexed PET (mPET) 	

Features & Specifications

Resolution:	•	Superior resolution - ≤1.0 mm
Detector:	•	Phoswich PET Detector with tDO
Sensitivity:	•	11% Sensitivity at 100 to 700 keV
Animal Handling:	•	Integrated temperature control a Cardiac and respiratory gating Anaesthesia control Animal transfer bed
СТ:	•	Low dose radiation/fast scan time

Argus Compact PET or CT

- The Compact PET & CT systems are alternatives to the SuperArgus PET/CT.
- The Compact PET system incorporates the same state-of-the-art detectors and electronics as the SuperArgus system.
- There is a common bed to transport the animal between imaging system

Model	2r	4r	6r	2R	4R	6R	2P	4P	6Р
Fixed axial field of view (mm):	50	100	150	50	100	150	50	100	150
Dynamic axial field of view:	220	220	220	350	350	350	650	650	650
Transaxial field of view (mm):	80	80	80	120	120	120	210	210	210
Bore Size (mm):	90	90	90	160	160	160	260	260	260
Number of PET Rings: (3 & 5 ring options available)	2	4	6	2	4	6	2	4	6
Number of Detectors:	28	56	84	48	96	144	64	128	192
Number of DOI Crystals:	9464	18928	28392	16224	32448	48672	21632	43264	64896

PRECLINICAL IMAGING

) (true Depth-of-Interaction)

and physiological monitoring

Systems can be configured as standalone PET systems or incorporated with computed tomography (CT)

22

es

The compact systems have a bore size of 55 mm making it ideal for mouse imaging.

PHOTOACOUSTIC TOMOGRAPHY **TRITOM**

The TriTom imaging platform utilizes photoacoustic and fluorescence tomographies (PAFT) to enable high-resolution (up to 160 µm) non-invasive in vivo whole-body imaging of small animals.

With the ability to use multiple excitation wavelengths per scan, the multi-modality system can simultaneously acquire photoacoustic and fluorescence data in large volumes (> 25 cm³) allowing for spectroscopic molecular analysis within the region of interest.

In addition to 3D molecular maps, the TriTom enables spatially-resolved assessment of physiologic parameters in vivo, such as volumetric blood content and oxygenation without the need for contrast agents. The TriTom provides quantitative imaging for a wide range of fluorophores and other molecular probes excited between 460 nm and 1320 nm.

Small Animal Whole Body Photoacoustic and Fluorescence Molecular Imaging Platform

- Anatomical Imaging/Registration
- Oncology Research
- Tissue Engineering and Regeneration
- **Developmental Biology**
- Neuroscience
- Development of Molecular Probes, Optical Contrast Agents, and Fluorophores

Features & Specifications

Resolution

Deep tissue quantitative imaging with a high spatial resolution (up to 160 µm).

Whole-body In Vivo Small Animal Imaging

Mice and rats (<200 g) can be imaged as a stack of 3D volumes for whole-body imaging.

Laser Optical Excitation

Easy-to-use nanosecond laser provides stable highpower excitation, wide wavelength tuning range (with fast wavelength switching), little to no warm-up time, and quantifiable results.

High Throughput

Fast (<36s) imaging scans of large (> 25 cm³) volumes simultaneous assessment of multiple (up to 10x) microsamples of contrast agents

Animal Handling

- Integrated gas anaesthesia
- Adjustable mouse holder
- Temperature-controlled imaging chamber
- Repeatable positioning for longitudinal studies

Software

User friendly, integrated software.

System

- Size: 78 cm x 35 cm x 70 cm
- Laser unit is separate
- Light-tight imaging chamber and laser interlocks.

		/
/	Ĺ	L
		T

P	PhotoAcoustic (PA) Imag	jing Channel	
Model:	Basic	Premium	
Туре:	3D (High-resolution deep tissue molecular, physiological, and anatomical imaging, subcutaneous & skin imaging)		
Spatial Resolution:			
Molecular Imaging Sensitivity:	100 nM ICG in blood plasma Multi-species molecular unmixing CNR 1.7		
PA Excitation Range:	532 nm & 650 - 1320 nm	460 – 1320 nm	
Laser Pulse Repetition Frequency:	20 Hz		
Peak Pulse Energy:	160 mJ @ 700 nm	130 mJ @ 700 nm	
Detection Points Per Scan:	> 69,000 (Single scan, 360 deg azimuthal rotation)		
Detector Configuration:	Curve-linear array Scanned 360 deg		
Detector Characteristics:	96 Elements 6 MHz ± 10% ≥ 55% bandwidth @ -6 dB		
PA Signal Digitizer:	12-bit dynamic range 40 MHz sampling rate Programmable amplifier from 46-91 dB		

Fluorescence (FL) Imaging Channel		
Model:	Premium	
Туре:	3D or Real-time 2D	
Spatial Resolution:	170 μm x 125 μm (At the skin level of a live test subject)	
FL Excitation Range:	460 - 800 nm	
Excitation Line Width:	< 1 nm (equivalent to employing 150 extremely narrow band excitation filters)	
Emission Filter Set:	8 filters covering emission range between 510 nm and 995 nm 2 additional filter slots available	
Detector Type:	Back-illuminated sCMOS	
Bit Depth:	16-bit	
Max Frame Rate:	40 fps	

PRECLINICAL IMAGING

OPTICAL (BLI/FLI) NEWTON 7.0

The Newton 7.0 is a cutting-edge optical imaging system that offers the versatility to perform bioluminescence, fluorescence, and 3D tomographic imaging in a single device. The user-friendly interface and advanced features make it ideal for in vivo, ex vivo, and in vitro imaging applications, as well as simultaneous imaging of multiple specimens.

The system features a state-of-the-art camera that boasts one of the widest lens apertures on the market. This camera provides excellent sensitivity for a variety of luciferase enzymes and fluorophores commonly used in preclinical research, allowing for fast and efficient signal acquisition. The intuitive workflow and user-friendly software are optimized for multi-user use, saving valuable time in longitudinal studies.

Applications

Oncology	Optical imaging can be used to non-invasively monitor the progression and spread of cancer throughout the body in preclinical animal models.
Immunology	Monitoring various populations of immune cells can contribute significantly to the understanding of their physiology and the development of new therapeutic strategies.
Infectious disease	Optical imaging can be used to non-invasively visualize a site of infection as well as the efficacy of a treatment in the context of living subject.
Neurology	Optical imaging can be used to monitor the progression of various neurodegenerative diseases as well as to test novel targeted therapeutics within the brain and spinal cord.
Biodistribution studies	The ability to image the whole subject, gives optical imaging a unique advantage in preclinical biodistribution studies, one image can provide measurements for multiple organs throughout the body.

Cooling

-90°C

Features & Specifications

Full Spectrum	8 excitation channels
Funability:	• 8 narrow bandpass emission filter
	• 11 position filter wheel
Fluorescent	• 8 excitation channels across the vi
Excitation:	spectrums
	• 2 powerful Laser Class II arrays cor
3D Optical	Integrated 3D tomography modul
ſomography:	topographical model of the imagi
Motorized	• Fully motorized movement of the
Darkroom:	pad (X/Y axis) with adjustable FOV
Acquisition and	• License-Free
Analysis Software:	• User Friendly
	Fully GLP and CFR21-compliant
	• Data export at 16-bit .tiff or 8-bit .jr

Models	BT 100	FT 100	BT 500	FT 500	Bio	
VIS/NIR Fluorescence:	Upgradeable	Upgradeable	400 > 900 nm	400 > 900 nm	400 > 900 nm	
Emission Filters:	4 Narrow Band-pass filters included for BLI Tomography: 500/550/600/650 nm		8 Na	ers included: / 50 nm		
Field Of View:	12 X 12 cm		6 x 6 cm to 20 x 20 cm		6 x 6 cm to 20 x 20 cm	
Darkroom:	 Fixed Camera Fixed Animal Stage 		 Z-Axis Motorized Camera X/Y-Axis Motorized Animal 		 Z-axis Motorized Camera 15° Tilting Sample Stage Adjustable pot holder 	
Animal Capacity:	Up to 3 mice		Up to :	5 mice	Not Applicable	
Heated Stage:	Yes Yes		Yes	Yes	Not Applicable	
Animal Handling:	· He · Inc	eated Mouse Bed dividually Controlled	Anaesthesia Manifo	lds	Not Applicable	

26

BLI

Yes

Lens

f/.070

pg format

OPTICAL (NIR-II FLUORESCENCE) NEWTON FT-900

WESTERN BLOT & GEL DOCUMENTATION FUSION

The **NEWTON FT 900** is the first deeply cooled CCD imager dedicated to both fluorescence and bioluminescence multi-spectral imaging as it allows for in vivo applications in the visible, near and short-wave infrared spectrum (VIS/ NIR/ NIR-II). Smart and ultra sensitive, it provides non-ionizing and noninvasive visualization of biological processes in real-time.

This cutting-edge optical imaging system facilitates the penetration of NIR-II light deeper into small animal tissue with less autofluorescence resulting in clearer and sharper images.

Applications

- Tumor and infection monitoring Cell migration tracking
- Detailed vascular blood flow maps
- Vasculature and microcirculation visualization
- Biodistribution and pharmacokinetics studies
- Drug dispersion

.

Heart rate and breathing

Fusion systems are optimal for quantification grade imaging, overcoming challenges in chemiluminescent Western blot data using advanced High Sensitivity Reading camera technology. This provides a robust dynamic range, linearity, and supreme sensitivity, reducing noise for clear signals. Furthermore, they ensure consistent, reproducible data, unaffected by chemiluminescence time courses, with automatic imaging adjustments for optimal image dynamics.

Features & Specifications

		F	usion FX7		All Mode	els
Operating All Models • PC Based	Optics:	 16-bit S Camera Grade G Cooling Proprie Length Apertu Resolut Monoc 	cientific Grade CCD a) / 400-900 nm / 4.8 OD): -65°C Absolute tary V.070 – Fixed Focal Motorized lens re: f/0.7 ion: 10 Megapixels nrome & Color imaging	 16-bit S Camera Grade Q Cooling Proprie Length Apertu Resolut Monocl 	cientific Gra a) / 400-900 g: -30°C Abso tary V.070 – Motorized I re: f/0.7 tion: 20 Meg hrome & Co	ade CCD nm / 4.8 OD olute Fixed Focal lens gapixels lor imaging
Dark Room All Models • Stainless steel	Spectra Ca	psules:	Fusion FX7 8 · Capsule Adapter	FX6	Fusio • Capsu	n Solo 6S & 6X
			All Models Excep	t Fusion Sc	olo 6X	Fusion Solo 6
Software All Models • Evolution.Capt (free)	Excitation	epi-illuminat	 7 Customiz Motorized UV, R, G, B, 	able channels FR, NIR, DIR		4 Customizable o Non-Motorized UV, R, G, B, FR, N
	Trans-illum	ination PAD	 UV-PAD, 31 UV-PAD, 31 UV-PAD, 31 Blue-PAD, 31 Blue-PAD, 31 White-PAD 	2 nm 2 nm & 365 nn 270 nm), LED	n	

Models	NEWTON FLIR 500	NEWTON IR 500		
Bioluminescence:	Ultra-high-sensitivity 2D and 3D Optical Tomography	Not applicable		
NIR-II Fluorescence: High photon penetration depth (10x greater than visibleFluorescence)	 VIS camera 400-900 nm InGaAs SWIR camera 900-1700 nm Monochrome or color imaging mode From 20 frames per second up to many minutes exposure 	 InGaAs SWIR camera 900-1700 nm Monochrome or color imaging From 20 frames per second up to many minutes exposure 		
Emission Filters:	14 High efficiency filters. Peak emission: 500, 550, 600, 650, 700, 750, 800, 850, 1100, 1200, 1300, 1400, 1500, 1600 nm	6 High efficiency filters. Peak emission: 1100, 1200, 1300, 1400, 1500, 1600 nm		
Illumination Sources:	9 Excitations channels: 440, 540, 580, 640, 680, 740, 780, 880, 980 nm	5 Excitations channels: 680, 740, 780, 880, 980 nm		
Lens:	Proprietary V.070 lens. f/0.70			
Field Of View:	Maximum: 20 x	20 cm / Minimum: 6 x 6 cm		
Animal Handling:	 Individually controlled anaesthesia manifolds Heated animal bed for 5 mice 			
Acquisition and Analysis Software:	License-Free & us Fully GLP and CFF Data export at 16-	er friendly R21-compliant bit .tiff or 8-bit .ipg format		

- Advanced camera & optics
- Complimentary software
- Spectral unmixing
- Powerful fluorescence excitation

PRECLINICAL IMAGING

GEL DOCUMENTATION E-BOX

MICROBUBBLE CONTRAST AGENTS USPHERE SERIES

VILBER's Gel Documentation systems, made of stainless steel and aluminum, provide superior image quality for DNA and RNA gels using Super-Bright UV illumination and filter technology. These systems utilize fluorescence for gene expression and protein detection, efficiently separating excitation and emitted light to yield optimal sample images. Catering to a wide range of applications, VILBER offers technologies varying from basic to advanced, excelling in sensitivity, speed, and detection of DNA, RNA, and protein.

Super-Bright UV Pad:	DNA/RNA gel and stain imaging agents: Ethidium Bromide, Sybr-Safe, Sybr-Green, Gel-Red/Green, Sybr-Gold, GFP, Pro-Q Emerald, Sypro Ruby, FITC, DAPI.
White Pad/light conversion screen for: Documentation	EPI white light applications (e.g., protein gels, X-Ray film, autorads, SSCP gels, colony/flask imaging): Coomassie Blue, Silver Stain, Auto- rads, Ponceau S Red, Copper Stain.
Blue Pad for: DNA/RNA detection (prevents DNA "nicking")	Three sets of electrodes make it easy to work with small mice, large rats and many small animals in between.

Features

- State-of-the-art camera technology
- Free software
- One click to image
- High contrast medical grade touch screen display with magnesium reinforced protection glass

Applications

transfection.

These agents are optimized for small animal imaging, ensuring precise control over particle size and providing detailed perfusion information for tumor and organ imaging, drug development studies, and more.

Features & Benefits

ligh concentration of	Recommended microbubble injec
nicrobubbles per ml of	(1-20 $\mu L)$ for small animals like mic
ctivated contrast agent	enhancement and circulatory syst
~2.5×1010 bubbles/ml)	saline enables precise delivery in s
mall size distribution	Microbubble's small size ensures a
1.1-1.4 µm) of activated	perfusion characteristics.
nicrobubbles	
Once activated,	Microbubble stability for 3 days en
he microbubble	wastage during required studies.
oncentration is stable	
or 72 hours, when stored	
t 2-8°C	
/icrobubbles work	Microbubbles are versatile and sui
t a wide range of	including mice, rats, rabbits, non-h
requencies	have been successfully used on dif
1-40 MHz)	supporting both linear and non-lir
	modes.

LASER SPECKLE **RFLSI-ZW**

The RFLSI-ZW laser speckle imaging system enhances micro-circulation research with advanced optics and algorithms, improving field size, image quality, frame rate, and resolution. Its non-contact LSCI technology provides efficient micro-circulation measurement for human and animal tissues, useful in studies like ischemic stroke and lower limbs. It offers multi-output including high-resolution images, videos, and quantified perfusion and vessel diameter data.

Data

Quantified Visualized

• High-Speed Camera

Applications

- Auricle damage repair through vascular regeneration in nude mice
- Blood flow response in rat and mouse cerebral cortex somatosensory region
- External stimuli-induced light and electrical responses in mouse cortex blood flow
- Research on cerebral ischemia,

Reliable Data

Measurement

Full-Frame HD

Images & Video

- reperfusion response, and brain injury in rats and mice Imaging of **cerebral blood flow** related to
- cortex physiology and pathology Various physiological and pathological circulation and metabolism

In vivo imaging of **cerebral cortex blood** channels in pathological animal models like MCAO Research on intestinal mucosal vessels

Fast Data

Acquisition

Easy Operation

and cortical diffusion inhibition Research on lower limb ischemia and vascular survival in rodents

The USphere Series of microbubble contrast agents are designed for preclinical imaging, catering to various species like mice, rats, rabbits, and non-human primates, effectively working at frequencies from 1 to 40 MHz. With a small size distribution (1.1-1.4 µm) and high concentration (~2.5×10¹⁰ bubbles/ml), they are suitable for diverse applications, including perfusion imaging, targeted biomarkers, multi-modal imaging with fluorescent dyes, targeted drug delivery, and gene

30

ction volume

- e or rats balances contrast
- tem safety. Dilution with sterile mall amounts.
- accurate microvasculature

ables efficient utilization without

- table for various species,
- human primates, and pigs, and
- fferent ultrasound systems,
- near/harmonic contrast imaging

PRECLINICAL IMAGING

INTRAVITAL MICROSCOPY

Intravital Microscopy(IVM) is an all-in-one two-photon and/or confocal microscopy system designed and optimized for longitudinal imaging of live animal models.

Confocal IVM systems enable optical sectioning of *in vivo* tissue via rejection of out-of-focus fluorescence light coming from the background tissue which will result in images with high contrast and quality.

Features & Benefits

Integrated Heated Animal Stage with Physiological Controller & Inhalation Anaesthesia Inlet/Outlet:	Ensures animal well-being throughout the imaging session and consistency between animals within a study, while enabling connection to an external inhalation anaesthesia machine. It is compatible with all universal anaesthesia machines.
User-Friendly Ergonomics & User Interface:	Allows for ease of use, and reproducible results by experts and non-experts.
Fast to Ultrafast Scanning:	Track the movement of several cells <i>in vivo</i> to better understand the biological processes being examined.
Motion Compensation Function:	Provides enhanced image quality on imaging dynamic organs, automatically compensating for the effects of respiratory motions and brain pulse.
Animal Stabilizing Holders & Hardware:	Quick, secure stabilization of the animal on the stage for time-lapse and longitudinal imaging, minimizing motion artifacts.
4-color Simultaneous Imaging:	Multiplexity and simultaneous monitoring of various labelled elements within the tissue.
4D Imaging:	The software allows for acquisition of 3D stacks of moving objects over time and rendering it as a 4D image.

Models	IVM-C3	IVM-M3	
Laser			
Туре:	Confocal Laser Unit	Tunable Two-Photon Laser Unit	Con Tun Unit
Wavelength:	405 nm (20 mW), 488 nm (20 mW), 561 nm (20 mW), 640 nm (20 mW)	690 – 1,050 nm	For 405 (20 561 (20
			For 690
Fluorescenc	e		
Detector:	Confocal Detector	Two-Photon Detector	Con

Confocal Detector T Wavelength: 185 – 900 nm W (DAPI, CFP, GFP, YEP, REP, [[Cy5, Cy5.5, etc.) C 4 Ultra-broadband high P SNR PMTs (UV to Near IR, Hill Ultra High Sensitivity, Low Dark Current) 25-2000 µm variable S pinhole U	Wo-Photon Detector Vavelength: 185 – 760 nm DAPI, CFP, GFP, YFP, RFP, cy5, Cy5.5, etc.) High quantum efficiency PMTs (UV to Near IR, Ultra igh Sensitivity, Low Dark urrent) Ultra-broadband high NR PMTS (UV to Near IR, Itra High Sensitivity, Low Dark urrent) 5-2000 µm variable jinhole	Con Wav (DAI Cy5, 4 UI PMT Sensit 25-2 Two (DAI Cy5, 4 Hi PMT
---	---	---

Variable Emission Filter:

(Optional)

6 or 2 emission filters can be mounted on each of four detectors

ScanHead - All Models

 Scanner:
 ·
 Polygonal mirror (Fast axis scanning, Max. 66 kHz)
 ·
 ·
 Galvano scanner (Slow axis scanning, Max. 200 ms/step)
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·
 ·

Image - All Models

FOV:		100 x 100 µm ² – 10 x 10 mm²
Pixel Resolution:		Max. 2,048 x 2,048 pixels
Imaging Speed:	•	Standard: 30 fps @ 512 x 512 pixels

.

- (Optional) High Speed: 50 fps @ 512 x 512 pixels
- (Optional) Ultra High Speed: 100 fps @ 512 x 512 pixels

31

IVM-CM3

IVM-MS3

IVM-CMS3

Confocal Laser Unit Compact Two-Photon Laser Unit

For Confocal 405 nm (20 mW), 488 nm (20 mW), 561 nm (20 mW), 640 nm (20 mW)

For Two-Photon Fixed 920 nm

Confocal Detector

Wavelength: 185 – 900 nm (DAPI, CFP, GFP, YFP, RFP, Cy5, Cy5.5, etc.)

4 Ultra-broadband high SNR PMTs (UV to Near IR, Ultra High Sensitivity, Low Dark Current)

25-2000 µm variable pinhole **Two-Photon Detector**

Wavelength: 185 – 760 nm (DAPI, CFP, GFP, YFP, RFP, Cy5, Cy5.5, etc.)

4 High quantum efficiency PMTs (UV to Near IR, Ultra High Sensitivity, Low Dark Current)

ifocal Laser Unit able Two-Photon Laser

Confocal 5 nm (20 mW), 488 nm mW), nm (20 mW), 640 nm mW)

Two-Photon -1,050 nm

nfocal Detector

avelength: 185 – 900 nm API, CFP, GFP, YFP, RFP, 5, Cy5.5, etc.) JItra-broadband high SNR ITS (UV to Near IR, Ultra High sitivity, Low Dark Current) 2000 µm variable pinhole **o-Photon Detector** avelength: 185 – 760 nm

API, CFP, GFP, YFP, RFP, 5, Cy5.5, etc.) łigh quantum efficiency

PMTs (UV to Near IR, Ultra High Sensitivity, Low Dark Current) Two-Photon Detector Wavelength: 185 – 760 nm (DAPI, CFP, GFP, YFP, RFP, Cy5, Cy5.5, etc.) 4 High quantum efficiency PMTs (UV to Near IR, Ultra High Sensitivity, Low Dark Current)

Imaging Head - All Models Objectives: Max. 5 objectives are mount

Max. 5 objectives are mountable on S/W controlled motorized turret (IX – 100X) Compatible for commercial objectives

In Vivo Animal Stage - All Models

.

3D Stage:

Travel Range: 50,000 x 50,000 x 75,000 μm (XYZ)

- Micromanipulation (Max. 0.2 µm resolution) 3-Axis independent control with Jog Dial & S/W

Compact Two-Photon Laser Unit

Fixed 920 nm

PRECLINICAL IMAGING

IMAGE ANALYSIS SOFTWARE SEGMENT

IMAGE ANALYSIS SOFTWARE IMALYTICS PRECLINICAL

Segment application is a comprehensive software solution for quantitative cardiac MR image analysis. The software has been specifically designed for use in preclinical research and will work with images acquired on our M-Series MRI systems. The Segment software employs advanced artificial intelligence (AI) algorithms to facilitate faster analysis of both left ventricle (LV) and right ventricle (RV) functions. In addition to systolic functional analysis, Segment has optional modules for delayed contrastenhanced imaging with automatic scar segmentation, strain analysis, and many other tools.

Cardiac Function Analysis Software

VIVOQUANT

VivoQuant is a vendor-neutral visualization, processing, co-registration, and quantification software suite developed by scientists for their peers. This versatile platform supports multi-modal and multi-species imaging, providing powerful tools for fine-tuning images, isolating and analyzing regions of interest, and more. With support for multiple image formats, including DICOM and 30+ native data formats, VivoQuant streamlines image analysis research studies across various imaging modalities, making it ideal for basic and translational research, including drug discovery.

Fully DICOM compatible; along with 30+ other vendor specific formats:	Users may import image data from any number of preclinical imaging systems, support for both static and dynamic data sets.
Multi-modality support:	VivoQuant supports and overlays data from most imaging modalities including MRI, PET, SPECT, CT, and optical imaging.
Integrated image analysis tools:	Improve analyses using the multi-atlas segmentation (MAS) tool, K-Means Segmentation Algorithm, and Cortical Thickness Tool.
Three-dimensional rendering function:	Apply balancing, shading, orientation, color, and lighting parameters to enhance 3D image renderings

for presentations and publications. (3D ROI).

3D	Brain	Atlas	Tool
00	Diani	7 (0100	1001

- Multi-Atlas
- Segmentation Tool
- Pharmacokinetic
- **iPACS**

- Modeling Tool
- Integration with

Imalytics Preclinical is a user-friendly software for fast interactive biomedical image data analysis, supporting 3D, 4D, and 5D data from various modalities. Advantages include optimized GPU processing for real-time 3D segmentations, an easy-to-learn interface with tutorials, and worldwide cloud-based accessibility for collaboration and remote work. It has been used to analyze (multi-modal) data sets from CT, PET, SPECT, MRI, US, FLT, and BLT.

	Features
Pharmacokinetic modelling:	 Region-based fitting Voxel-based fitting (parametric m Patlak model AIF generation, saving & loading One-Tissue compartment models Two-Tissue compartment models
Relaxometry:	 Region-based fitting Voxel-based fitting (parametric m T1-model T2-model
3D Printing:	 STL-export of image iso surface STL-export of classes Support generation
Bone analysis:	 Trabecular thickness & separatior Bone statistics (Bone volume, bone fraction, bone surface,) BMD calibration and measureme Local thickness and separation measureme
Vascular analysis:	 Vessel tortuosity Vessel diameter measurements a Vessel diameter feature maps (diameter feature maps generation)
Samples:	 Phantoms Cells Tissues Organs Bones Tumors Whole-body scans for insects, fish rats, sheep, and other mammals

maps)
ls s
naps)
n one volume
ent nap
along vessel istance maps) on

h,	birds,	mice,
	,	,

- Signal Quantification
- High-throughput
- imaging 4 mice (or more)
- Kinetic Modeling
- Cardiac Imaging
- Integration with iPACS

RESEARCH ULTRASOUND

RESEARCH ULTRASOUND

Advanced

Imaging Modes

RESEARCH/THERAPEUTIC ULTRASOUND PRODIGY

	The Prodigy is a compact, high-performance ultrasound system optimultrasound engineering research applications. The Prodigy is available	nized for a variety of Elastography with either 128 or
	In addition, standard (up to 170 Vpp, 0.2 W/ch) and high-power (up to 1 configurations are available.	40 Vpp, 1 W/ch) Focused Ultrasound
		Pulse Sequence Programming
	High Power Transmit Modules ARF01-200 Single channel 1-50 MHz transmit Up to 15 MHz transmit Up to 152 W (W mode	FU256 smit channels MHz transmit SW CW mode
		Compounding
Features	& Specifications Probes	Complex Adaptive Imaging
Transmitter:	Frequencies: 1 KHz to 30 MHz *Frequencies under 1 KHz can be discussed upon request	
	 True arbitrary transmit waveform with 4096 steps Time delay accuracy: up to 2.8 ns 	7.5 MHz Linear Harmonic Imaging
Receiver:	 True arbitrary transmit waveform with 4096 steps Time delay accuracy: up to 2.8 ns Programmable gain range: -3~38 dB ADC sample: 16 bit, up to 125 MSDC 	7.5 MHz Linear Harmonic Imaging
Receiver: Embedded PC System:	 True arbitrary transmit waveform with 4096 steps Time delay accuracy: up to 2.8 ns Programmable gain range: -3~38 dB ADC sample: 16 bit, up to 125 MSPS High-performance CPU RAM: 32 GB or higher GPU: nVidia RTX 2060 or faster 	7.5 MHz Linear 18 MHz Coded Excitation
Receiver: Embedded PC System: Probe Connectors:	 True arbitrary transmit waveform with 4096 steps Time delay accuracy: up to 2.8 ns Programmable gain range: -3~38 dB ADC sample: 16 bit, up to 125 MSPS High-performance CPU RAM: 32 GB or higher GPU: nVidia RTX 2060 or faster PCle Gen3, up to 10 Gbytes/sec One 256-ch ITT Cannon DLM6-360R Two 128-ch ITT Cannon DLM1-156R 	7.5 MHz Linear Harmonic Imaging R8 MHz Linear Coded Excitation R.5 MHz Phased Synthetic Aperture/ Total Focusing
Receiver: Embedded PC System: Probe Connectors:	 True arbitrary transmit waveform with 4096 steps Time delay accuracy: up to 2.8 ns Programmable gain range: -3~38 dB ADC sample: 16 bit, up to 125 MSPS High-performance CPU RAM: 32 GB or higher GPU: nVidia RTX 2060 or faster PCle Gen3, up to 10 Gbytes/sec One 256-ch ITT Cannon DLM6-360R Two 128-ch ITT Cannon DLM1-156R 128-ch configuration uses half of the DLM6 and the second DLM1. 	A.5 MHz Linear Harmonic Imaging Coded Excitation Coded Excitation Coded Excitation Synthetic Aperture/ Total Focusing Method
Receiver: Embedded PC System: Probe Connectors: External Interfaces:	 True arbitrary transmit waveform with 4096 steps Time delay accuracy: up to 2.8 ns Programmable gain range: -3~38 dB ADC sample: 16 bit, up to 125 MSPS High-performance CPU RAM: 32 GB or higher GPU: nVidia RTX 2060 or faster PCle Gen3, up to 10 Gbytes/sec One 256-ch ITT Cannon DLM6-360R Two 128-ch ITT Cannon DLM1-156R 128-ch configuration uses half of the DLM6 and the second DLM1. *Adapter boards are available upon request Trigger in/out, clock output 	AS MHZ Linear Harmonic Imaging Coded Excitation Coded Excitation Synthetic Aperture/ Total Focusing Method
Receiver: Embedded PC System: Probe Connectors: External Interfaces: Basic Imaging Modes:	 True arbitrary transmit waveform with 4096 steps Time delay accuracy: up to 2.8 ns Programmable gain range: -3~38 dB ADC sample: 16 bit, up to 125 MSPS High-performance CPU RAM: 32 GB or higher GPU: nVidia RTX 2060 or faster PCle Gen3, up to 10 Gbytes/sec One 256-ch ITT Cannon DLM6-360R Two 128-ch ITT Cannon DLM1-156R 128-ch configuration uses half of the DLM6 and the second DLM1. *Adapter boards are available upon request Trigger in/out, clock output B-Mode, M-Mode, Color Doppler, PW Doppler, Multi-Focus, Multi-Beam, Duplex and Triplex 	Harmonic Imaging Harmonic Imaging Coded Excitation Coded Excitation Synthetic Aperture/ Total Focusing Method

Shear Wave Elastography	Shear wave imaging, includ imaging, can be implement sequences.
High Intensity Focused Ultrasound	High-intensity focused ultra when combined with any of
Pulse Sequence Programming	Ultrasound pulse sequence of imaging modes where th available with both an intuit C#, and Python.
Real-time Channel Data Acquisition	RF data can be acquired in a mode, raw data can also be C#, or Python in real-time.
Compounding	Prodigy allows spatial comp
Complex Adaptive Imaging	Complex adaptive beamforr based) can be implemented pre/post-beamforming algo
Harmonic Imaging	Harmonic imaging improve resolutions. Both filter based implemented.
Coded Excitation	Coded excitation improves S designed using the arbitrary can also be arranged with d coded excitation.
Synthetic Aperture/ Total Focusing Method	Prodigy allows a variety of sy receive aperture, sparse syn be performed.

Applications

Shear Wave Elastography

Conventional Arrow VFI

Pulse Sequence Mode • Spatial Compounding

Trapezoidal or Steerable Scanning Harmonic Imaging

ing supersonic shear imaging and ultrafast plane wave ed with programmable push beams and imaging

sound (HIFU) can be performed using the Prodigy system the high-power transmit modules.

programming provides flexibility in designing a variety ne parameters can be fully programmed. This feature is tive graphical user interface as well as through MATLAB,

all imaging modes. When using the pulse sequence accessed using the built-in viewer or analyzed in MATLAB,

bounding up to nine prespecified steering angles.

ming algorithms (e.g., MVDR based and/or coherence I in real time on Prodigy using the embedded GPU. Both rithms can be implemented.

es the image quality in terms of spatial and contrast d and pulse-inversion (PI) based harmonic imaging can be

SNR and depth penetration. Codes can be arbitrarily y transmit waveform generator. The resulting sequence ifferent codes, enabling a variety of applications using

ynthetic techniques, such as synthetic transmit and thetic aperture, and random synthetic receive aperture, to

Particle Trajectory VFI

Shear Wave Elastography

BIOFABRICATION

BIOFABRICATION

BIOPRINTER **NGB-R**

The NGB-R is a multi-modal, 4D bioprinting platform designed and developed to print live tissues and organs.

Combining laser-assisted, micro-valve and extrusion bioprinting, the NGB-R enables true versatility of bioprinting (from cells to spheroids) and offers the possibility of using a large number of biomaterials and hydrogels.

The NGB-R includes an embedded microscope for in-line cell printing monitoring and relies on a complete software suite for managing bioprinting protocols, from biological CAD to data analysis of manufacturing.

The Next Generation Bioprinting NGB-R platform from Poietis has been developed to overcome current tissue manufacturing shortfalls and solve critical limitations of existing 3D bioprinting technologies, thanks to single-cell resolution and learning-based methods. This platform integrates automation and robotics, and numerous online sensors - including cell microscopy - and Artificial Intelligence processing.

Applications

Regenerative Medicine Advanced Therapies	Regenerative medicine is a rapidly growing field that involves replacing or regenerating damaged or diseased cells, tissues or organs to restore normal function.
Drug Discovery & Therapeutic Testing	3D Bioprinted human tissues can bridge the gap in testing of therapeutics from preclinical animal models to in-human trials. In addition, the use of bioprinted tissue models allow for high-throughput screening of drugs.
Disease Modelling	3D Bioprinting can be used to fabricate <i>in vitro</i> 3D disease modes, mimicking the structural and spatial features of the disease environment. This can be used to study the disease mechanism and test therapeutics.
Aesthetic Medicine & Cosmetic Testing	3D Bioprinted tissues can replace animal models for testing of cosmetic products. 3D bioprinted tissue fabricated out of human cells are more ethical for validation of aesthetic products.

Features & Specifications

Multi-Modality, Laser- Assisted, Bio-extrusion, and Micro-valve Bioprinting Techniques:	The NGB-R inco • Laser-assiste • Bio-extrusio • Micro-valve
High Cellular Viability: (>95%)	NGB-R's laser-as damage causing reaches >95% ar
High-resolution, High-printing Speed:	NGB-R is the firs bioprinting, allow µm to 300 µm) o
High-precision (10 µm):	The initial position tissues. While or precise positioni positioning of ce
Integrated Microscopy & Image Analysis platform:	The NGB-R can each individual t
Microfluidic Multi-cell Loading Module:	This feature is de tissues in compl This optional mo pipette or homo
Robotic-assisted:	NGB-R is design manufacturing;

rporates 3 different bioprinting techniques all in one system: ed-bioprinting (LAB)

- on
- module

ssisted bioprinting technology is nozzle-free technique with no g forces occurring in the process. As a result, cell viability nd printed tissues become truly functional.

st commercially available system to boast laser-assisted wing users to deposit micro droplets (ranging in size from 50 of cell bioink with a precision of a few microns.

ioning of cells has a huge impact on the evolution of future dinary extrusion-based bioprinting techniques do not allow for ing of printed cells within the hydrogel, NGB-R allows precise ells at predesigned pattern.

come with an optional built-in microscope to acquire images of tissue layer at each step of fabrication.

esigned to enable fabrication of larger and more complex liance with the Good Manufacturing Practices (GMP). odule includes a microfluidic cartridge and an automatized genization.

ed to address automation and reproducibility issues in tissue ; 6-axis robotic arm integrated within NGB-R allows semi- to fully automated fabrication.

CARDIOVASCULAR FUNCTION

PHYSIOLOGICAL MONITORING

DOPPLER FLOW VELOCITY DFVS

Non-Invasive

RODENT SURGICAL MONITOR RSM+

The Doppler Flow Velocity System (DFVS) is a high-frequency, real-time pulsed Doppler device with integrated data analysis software for studying cardiovascular function in small animals. It offers excellent temporal resolution, making it ideal for studying fast heart rates and rapid blood accelerations.

This system has been successfully used with mice, rats, bats, naked mole rats, and other small animals, and can also measure blood flow velocities in larger animals using implanted extra-vascular Doppler cuff probes.

Translational Data

Small Footprint

Cardiac Function: Systolic and Diastolic	Area: Myocardial Infarction, Heart Failure, Hypertrophy, Cardiomyopathy Flow Parameter : Aortic Outflow Velocity, Mitral Inflow Velocity		
Coronary Flow Reserve	Area: Myocardial Ischemia, Pressure Overload-Hypertrophy, Atheroscleros Flow Parameter: Hyperemic/Baseline Coronary, Flow Velocity Ratio		
Arterial Stiffness (Pulse Wave Velocity)	Area: Hypertension, Atherosclerosis Flow Parameter: Aortic Arch Velocity, Abdominal Aortic Velocity		
Pressure-Overload (Stenosis)	Area: TAC Banding Model Flow Parameter: Carotid (R/L) peak velocity ratio, Stenotic jet velocity- estimation of pressure gradient across stenosis		
Peripheral Artery Disease and Perfusion	Area: Renal, Carotid, Iliac, Femoral and Saphenous Vein Flow Velocities Flow Parameter: Flow Velocities in peripheral vessels before & after a surgical intervention or during therapeutic response		

Parameters

Renal Flow

Surgical Monitoring & Vital Sign **Measurements:**

• Heart Rate · R-R Interval

Peripheral Artery: Carotid. Renal. Femoral & Tail:

 Peak Velocity • Mean & Minimum flow velocity Pulsatility Index Resistivity Index

Other: Coronary. Transverse & Abdominal Aorta:

- Peak Diastolic Velocity (Coronary)
- Peak Systolic Velocity (Coronary)
- · Diastolic & Systolic Area (Coronary)
- Ratios PSV/PDV & SA/DA
- Pulse Wave Velocity
 - Isovolumic contraction time Isovolumic relaxation time

Diastolic: Mitral

Inflow Velocity:

• E-time duration

· A-stroke distance

· E-A peak velocity ratio

· A-time duration

· E-peak & E-stroke velocity

• E-peak to ½ E-peak time

·E-acceleration & E-deceleration time

• E-linear deceleration time & rate

506 122

The Rodent Surgical Monitor (RSM+) is an advanced, integrated surgical warming and vital signs monitoring solution for preclinical research in mice, rats and other small animals. The system provides detailed information, in real time, regarding subject body temperature, ECG, heart rate, pressure and respiration. The system incorporates intelligent zone heating, ultra-low noise, high-resolution ECG electronics, noninvasive electrodes, and a port for external needle electrodes for when subjects cannot be laid prone or supine.

Standard setup consists of three components:

- Touchscreen Display Unit
- Heated Surgical Platform
- Temperature Probes

Measure Simultaneously

Monitoring: Easy Documentation: Versatile: Standalone Data Collection: **Flexible: Dynamic:**

Real-Time

PAIR THE RSM+ WITH THE DFVS

39

Optional components:

- Pulse Oximetry Thigh Clip
- · Pressure Adapter Cable and

40

- Pressure Catheter
- · External Needle Electrodes

Features & Specifications

- Clearly labelled numeric panels and measurement waveforms make it easy to monitor critical parameters.
- Define optimal study conditions and ensure consistency between subjects and collaborating labs.
- Three sets of electrodes make it easy to work with small mice, large rats and many small animals in between.
- Capture data, make comments and view recordings on the tablet to guickly take measurements and verify experiment details.
- Expansion modules allow you to easily add functionality later as your lab and study's needs change.
- Responsive electronic heating can respond to changing lab conditions within seconds. not minutes.

WORKSTATIONS & INCUBATORS

WORKSTATIONS & INCUBATORS

HYPOXIA & ATMOSPHERIC CONTROL Anaerobic Chambers

BugBox Ax

The BugBox Ax is the ultimate solution for microbiologists facing high workloads. With a gloveless Ezee Sleeve™ port system and energy-efficient lighting, easily read plates without oxygen exposure.

Its compact size fits small labs perfectly, while adjustable temperature and humidity create an ideal cell growth environment. Add active O2 monitoring for precise control of anaerobic conditions

m²/5.77 ft bench footprint

30 plate capacity interlock

Intuitive touchscreen interface

Concept

The range of **Concept** workstations are rigorously tested for maximum productivity in anaerobic or microaerophilic incubation. Packed with innovative features to study sensitive microbes, it's perfect for culturing obligate anaerobes in various situations.

The modular design offers flexibility to expand and upgrade workspaces, making it easy to use and adaptable. Save time with fast interlock purge cycles and the Single Plate Entry System (SPES™) for efficient patient sample handling in correct anaerobic conditions.

- Internal HEPA Filtration
- Optical O₂ Sensors
- Touchscreen Control

Pop-Off[™] Front Cover

Ezee Sleeve Single Plate Entry System (SPESTM)

HYPOXIA & ATMOSPHERIC CONTROL Cell Culture Chambers

InvivO₂

The InvivO₂ workstation enables intricate cell interaction studies under optimal oxygen conditions, simulating environments like blood vessels or lung tissue. User-friendly and adjustable, it's ideal for cell culture applications that need precise oxygen control, offering stable user-defined environmental regulation and direct inner chamber access.

- Apnea/Apnoea
- Pulmonary Fibrosis
- ADHD
- Sleep Apnea
- Ocular Angiogenesis

- Control CO₂, Temperature and Humidit_\

The SCI-tive hypoxia workstations enhance stem cell culture quality by maintaining consistent oxygen, temperature, and pH conditions. They mimic in vivo conditions and allow for the study of complex cell interactions. These workstations offer a spacious environment for all stages of cell culture, and can accommodate various equipment, replacing open bench work. Optional features include a HEPA filtration for a clean work area and an enhanced containment package for user safety.

- Internal HEPA filtration to Class 4 (ISO 14644-1)
- The system logs data every minute, recording time, date, O2 and CO2 levels (set/actual). humidity, and temperature
- Ezeevin Glove ports for direct hand access
- Multi-cable gland (up to 6 individual cables)

Removable from 42 CO₂ control (from 0. Ultrasonic Humidity Detox sachet (large Temperature contro 0.1° C increments)

4

- Apnea of Prematurity
- SIDS (Sudden Infant Death
- Syndrome)
- Ischemia
- Occupational Hypoxia
- Atherosclerosis
- Developmental
- Disabilities
- COPD
- Recreational Hyperoxia

47

0 L usable chamber volume		Interlock has O_2 control and heating
.1% to 30.0% in 0.1% increments)		Internal power sockets x3
control (from ambient to 85% RH)		$O_{\rm 2}$ control (from 0.1% to 23.0% in 0.1% increments)
1		Gas sample port
ol (5 °C above ambient to 45.0° C in		Vacuum port connector
		Alarm settings
		Light control (on/off, dimming function)

WORKSTATIONS & INCUBATORS

HYPOXIA & ATMOSPHERIC CONTROL

HYPOXIA & ATMOSPHERIC CONTROL

OxyGenie

OxyGenie is a miniaturized, portable low-oxygen culture system for animal, plant, and bacterial studies. It enables short-term physiological oxygen- and temperaturebased studies, particularly useful for high-resolution microscopy or irradiation under relevant conditions. The system features 6 culture wells enclosed for physiological growth, situated on microscope glass for flexible experimental adaptation. It's an accessible tool for start-up validation or proof-of-concept physiological cell culture experiments.

VelO₂x

The VelO,x system has been engineered to provide an isolated and highly controlled oxygen environment to small animal models (i.e. mouse and/or rat). By directly mimicking the oxygen conditions experienced across a wide variety of disease or treatment models, the VelO2x grants researchers a better understanding of how O2 levels affect various conditions such as sleep apnea, systemic hypertension, pulmonary dysfunction, and ischemia to name a few.

Full control of oxygen levels Rapid changes in O, levels

Easy to use **Animal Welfare**

ReCO₂ver

The **ReCO₂ver™** and **ReCO₂ver™** Plus incubators are designed to offer precision They aim to minimize the impact of door openings that disrupt the environmental

PhO₂x Box

The PhO,x Box is a new, easy to use and economical Physoxia/Hypoxia system designed for in vitro cell culture experiments. PhO₂x Box comprises a Gas Controller (with both O₂ and CO₂ control) and a Cell Culture Chamber.

The Cell Culture chamber can be placed on a lab bench, or be placed inside an Incubator or a Workstation, while the Gas Controller remains outside. The Cell Culture Chamber has removable shelving and can accommodate microtiter well plates, small flasks and petri dishes.

MycoFog ™

MycoFog is a valuable tool for laboratories that need to maintain a clean and contaminantfree environment. The instrument is particularly useful for laboratories that work with tissue- and cell-culture controlled environment equipment including incubators, glove boxes, and anaerobic or hypoxic chambers.

MycoFog Biodecontamination Reagent (MFR-1): MFR-1 is for use with incubators 200L and less

MycoFog Biodecontamination Reagent (MFR-2): MFR-2 is for incubators and workstations over 200L but less than 500L

control over cell culture conditions and provide rapid recovery after interruptions. parameters essential for cell growth, thus ensuring the integrity of your work. Precision in temperature, gas and humidity as well as the rapid recovery of those conditions after door openings are crucial for ensuring cells are exposed to a constant environment required for their well-being.

CondoCell

The **CondoCell** is an isolation box for sensitive cell cultures, providing a stable environment with consistent temperature, humidity and gas conditions. Compatible with any incubator or hypoxia workstation, it enables uninterrupted culture and minimizes cross-contamination risks.

Resipher

The RESIPHER series of cell culture monitors are the world's first hand-held devices to measure extra-cellular oxygen flux in standard multi-well plates. They provide continuous, non-invasive oxygen consumption rate (OCR) measurements for days to weeks from inside any incubator/workstation that fits your cell culture plates.

MycoFog Biodecontamination Fogger is a battery-powered piezo-driven nebulizing instrument that creates the hydrogen peroxide fog that biodecontaminates your incubator.

MICROVASCULAR RESEARCH

STEREOTAXIC & NEUROSCIENCE PRODUCTS

MICROVASCULAR RESEARCH

Pressure Arteriography

45

Pressure Arteriography is the gold-standard for studying blood vessel function, reactivity, and mechanics. Living Systems Instrumentation is a leading provider of complete systems, ensuring quick setup and reliable results. Most applications use constant pressure, no intraluminal flow setup with an occluded distal end. For intra-vascular flow, a pump and pressure monitoring are needed.

Vessel Chambers

- Single Vessel Chamber
- Dual Vessel Chamber
- Linear Alignment Vessel Chamber
- Self Heated Single Vessel Chamber
- Self Heated Dual Vessel Chamber
- Linear Alignment Vessel Chamber

Special Vessel Chambers

- Linear Alignment Large Vessel Chamber Axially Rotating Single Vessel Chamber • Quick Transfer Single Vessel Chamber Perfusion Chamber with Metal Block
- for Magnetic Accessories
- Sealed Single Vessel Chamber

•Sealed Vessel Self Heated Chamber

Wire Myography

Wire Myography is an *in vitro* technique to study small resistance arteries' functional responses and vascular reactivity. Living Systems Instrumentation offers the classic Halpern/Mulvany style wire myograph, faithful to the original design but with modern advancements. Their myographs support various tissue types, making them suitable for different applications, including force measurements in micro vessels, large arteries, airways, and more. Explore Living Systems' wire myograph options for comprehensive vascular research.

The MYO-SC-1 Force Transducer Signal Conditioner converts force measurements from the MYO-CH wire myograph chamber's force transducer into an analog voltage for recording with an analog-to-digital converter or chart recording device

Myograph Packages

• Single Channel • Single Channel Self-Heated

- Two Channel Self-Heated
- Four Channel Self-Heated

Stereotaxic

Scintica offers a wide range of fully equipped stereotaxic instruments for various animal models. Choose from Standard, Digital, or Automatic options based on your precision needs. Upgrade from manual to digital and opt for single or dual manipulators. Elevate your research with our precise and efficient instruments.

Models

- Standard Stereotaxic Instrument
- **Desktop** Digital Stereotaxic Instruments
- **Compact Mouse** Stereotaxic Instruments

Precise Impactor

The Precise Impactors for Rat, Mice, and Monkey Spinal Cord Injuries. The Precise Impactor is designed for traumatic brain and spinal cord injuries, offering pneumaticelectric control for precise w of speed, depth, and dwell time.

Its touch screen interface and automatic zero detection ensure user-friendly and efficient operation. With a range of impact parameters and cylindrical head hammers available, the damage level can be precisely controlled for reproducible results. These user-friendly tools offer pneumatic control and accurate measurements, ensuring reproducibility and effectiveness in experiments.

Fiber Photometry System

The fiber photometry system detects realtime activity changes in central nervous system neurons. It calculates overall fluorescence of neurons to represent collective activity, not individual ones.

Compatibility with optoelectronics equipment for specific light wavelengths (410 nm, 470 nm, 560 nm). The 410 nm wavelength is utilized to acquire a reference signal and reduce noise. The system can capture signals from green fluorescence indicators such as GCaMP, dLight, neurotransmitter probes, and red fluorescence indicators.

46

STEREOTAXIC, NEUROSCIENCE & OTHER PRODUCTS

- Portable Rat & Mouse Stereotaxic Instruments
- **Warming** Stereotaxic Instruments
- Large Animal Stereotaxic Instruments
- **Dog/Monkey** MRI Stereotaxic Instruments

Tricolor Multichannel Fiber Photometry System

OTHER RESEARCH PRODUCTS

OTHER RESEARCH PRODUCTS

OTHER RESEARCH PRODUCTS

Intelligent Optogenetic System

The Intelligent Optogenetics System seamlessly integrates a laser and a waveform generator. Enhanced with features like remote control, one-click test transitions, and three distinct signal triggering modes, it caters to a wide range of experimental needs. This system minimizes human interference in animal behavior experiments. Additionally, its specialized test protocols and an intuitive experiment record output function streamline and enhance experiment management.

Automated Cell Counter

Cell counters tally live and/or deceased cells within cultures. In cell culture workspaces, researchers require cell counting solutions to gauge cell concentration pre-passage or viability post-drug treatment. C100 serves as an ideal cell counting choice for labs, accommodating diverse samples such as mammalian cells, stem cells, blood cells, epithelial cells, and endothelial cells.

Microcentrifuge & Refrigerated Microcentrifuge

The **Microcentrifuge** is a powerful and versatile solution for every lab application, with state-of-the-art refrigeration (if needed) and a user-friendly touch screen operating system. Enjoy quiet operation and reduced run times with speeds up to 15,000 rpm, multiple mode options, and a 24-place 1.5/2.0 mL tube rotor.

Partial Volume Correction (PVC) Phantoms

The micro PVC phantoms are available in 3 sizes (27 mm OD, 34 mm OD, and 49 mm OD). The 27 mm OD version is shown below for more detail. All units are in mm unless otherwise noted. These phantoms consist of one custom manufactured component and three separate pieces of commercial hardware for assembly.

Minux Rotary Microtome

The new generation of microtomes are built upon market-leading microtome design. These microtomes feature superior usability with excellent safety standards for all types of sectioning applications. If working with delicate specimens (example being brain samples) the system will provide reproducible, thin, serial sections of maximum quality time and again.

The first fillable biomimetic mouse phantom with Computed Tomography (CT) Hounsfield Unit (HU) density-equivalent bone and soft tissue. This phantom can be customized to include/exclude the following organ/tissue voids: tumor(s), brain, heart, lung, liver, spleen, stomach, kidneys, bladder, and a background region.

Minux Cryostat

This cryostat features superior usability with excellent safety standards for all types of cryosectioning applications. The cryostat is able to cut tissues at temperatures as low as -35 °C. When working with delicate specimens the system will provide reproducible, thin, serial sections of the best quality. The tissue can be flattened, and the freezing is expedited with a steel weight/heat extractor to provide a smooth flat-cutting surface. Fully automated and semi-automated versions are available.

Micro Derenzo Pattern Phantoms

These phantoms are used to characterize an imaging system's resolution by measuring the FWHM of hole patterns with varying diameters and spacing. Holes within a size group are spaced at exactly 2D (twice the diameter) apart. These phantoms feature six different hole sizes arranged in triangles around the center of phantom. These phantoms also feature our patented Linear-Filling Technology.

Bio-Mouse[™] Phantom

LAB CONSUMABLES

Multi-function Anaesthesia Solution

Scintica offers complete anaesthesia systems and accessories for the smallest preclinical research subjects. These systems are designed to deliver highly effective anaesthesia with depth modulation.

Dissection Dishes

Use our high-quality, tack and bubble-free siliconecoated dissection dishes.

Vaporizers

Anaesthesia machine vaporizer adopts advanced design to accurately control the output concentration of anaesthesia. Pour Fill, Easy Fill, and Key Fill, Cagemount and Selectatec available. Stable concentration output unaffected by flow, temperature and pressure. The built-in temperature compensator ensures the stable concentration of anaesthesia gas at different temperatures and flow rates, the flow range is 0.2-10L/min.

Glass Cannula Packs

Use our high-quality, tack and bubble-free silicone-coated dissection dishes.

Oxygen Concentrator

The high purity oxygen is separated from the air by molecular sieve pressure swing adsorption (PSA) technology. ROC-5A/ROC-8A Veterinary Oxygen Concentrator is designed specifically for veterinary use. The high purity oxygen is separated from the air by molecular sieve pressure swing adsorption (PSA) technology.

Large Animal Anaesthesia Solutions

Designed for simplicity, ease of use, and safety, our large animal veterinary anesthesia systems cater to a variety of animal species including dogs, cats, pigs, monkeys, and more.

The complete solution includes oxygen generation, anesthesia delivery, waste anesthetic gas absorption, monitoring, and mechanical ventilation.

Publications, Articles & More

We are committed to sharing knowledge and being part of the community, as we believe that providing our customers access to relevant information is important to their success.

www.scintica.com

LAB CONSUMABLES

50

Dissection Pins

These stainless-steel dissection pins are well-suited for a variety of applications

Order Your Lab Consumables

www.scintica.shop

naging (echo MR): A short case study to compare body composition data collected sing these ins

Article review: "Effects of Isoflurane on Coronary Blood Flow Velocity in Young, Old, and ApoE-/- Mice Measured by Doppler Ultrasound READ MORE »

Get In Touch

INFO@SCINTICA.COM

WWW.SCINTICA.COM

WEBSTER TX, **USA** LONDON, ON **CANADA** LONDON, **ENGLAND** AMSTERDAM, **THE NETHERLANDS**

Scintica:

Logos, product and company names are trademarks/registered trademarks of their respective represented companies. Scintica, Scintica Inc., Scintica Instrumentationare trademarks of Scintica Instrumentation Information and specifications are subject to change without notice.

V 052024