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Abstract

Objective: A methodology is introduced for the development of an internal dosimetry prediction
toolkit for nuclear medical pediatric applications. The proposed study exploits Artificial Intelligence
techniques using Monte Carlo simulations as ground truth for accurate prediction of absorbed doses
per organ prior to the imaging acquisition considering only personalized anatomical characteristics of
any new pediatric patient. Approach: GATE Monte Carlo simulations were performed using a
population of computational pediatric models to calculate the specific absorbed dose rates (SADRs) in
several organs. A simulated dosimetry database was developed for 28 pediatric phantoms (age range
2—17 years old, both genders) and 5 different radiopharmaceuticals. Machine Learning regression
models were trained on the produced simulated dataset, with leave one out cross validation for the
prediction model evaluation. Hyperparameter optimization and ensemble learning techniques for a
variation of input features were applied for achieving the best predictive power, leading to the
development of a SADR prediction toolkit for any new pediatric patient for the studied organs and
radiopharmaceuticals. Main results. SADR values for 30 organs of interest were calculated via Monte
Carlo simulations for 28 pediatric phantoms for the cases of five radiopharmaceuticals. The relative
percentage uncertainty in the extracted dose values per organ was lower than 2.7%. An internal
dosimetry prediction toolkit which can accurately predict SADRs in 30 organs for five different
radiopharmaceuticals, with mean absolute percentage error on the level of 8% was developed, with
specific focus on pediatric patients, by using Machine Learning regression algorithms, Single or
Multiple organ training and Artificial Intelligence ensemble techniques. Significance: A large
simulated dosimetry database was developed and utilized for the training of Machine Learning
models. The developed predictive models provide very fast results (<2 s) with an accuracy >90% with
respect to the ground truth of Monte Carlo, considering personalized anatomical characteristics and
the biodistribution of each radiopharmaceutical. The proposed method is applicable to other medical
dosimetry applications in different patients’ populations.

List of abbreviations

Al Artificial Intelligence

MC Monte Carlo

SADR Specific Absorbed Dose Rate
ML Machine Learning

LOOCV Leave One Out Cross Validation
MAE Mean Absolute Error
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MAPE Mean Absolute Percentage Error

RMSE Root Mean Square Error

NM Nuclear Medicine

DNN Deep Neural Network

EMD Empirical Mode Decomposition

SPECT Single Photon Emission Computed Tomography
PET Positron Emission Tomography

CT Computed Tomography

HPC High-performance computing

1. Introduction

Personalized internal dosimetry is of high interest in pediatric diagnostic and therapeutic applications involving
ionizing radiation from radiopharmaceuticals (Khong et al 2013, Papadimitroulas et al 2019). Young patients
provide a higher risk of stochastic effects under the radiation exposure from nuclear medicine (NM) procedures
(Robbins 2008, Adelstein 2014, Treves et al 2014).

Modern medicine exploits advanced computational tools for assessing absorbed dose in organs of interest.
To this basis, Monte Carlo (MC) simulations combined with detailed digital anthropomorphic models
(Akhavanallaf et al 2022) are considered gold standard (Sarrut et al 2014). The well established MIRD dosimetry
protocol considers patients’ variability using interpolated S-values based on pre-defined calculations and mass
correction (Bolch et al 2009).

The extensive development of Artificial Intelligence (AI) over the last decade, paired with the vast volume of
data generated in healthcare systems has spiked the interest of both researchers and healthcare practitioners over
its possible applications in medicine. This has led in an increase in Al applications in medical physics, including
NM (Nensa et al 2019). The main applications of Al in molecular radiotherapy and internal radiation dosimetry
are organ and tumour segmentation and classification, therapeutic dose calculation and internal dose prediction
(Arabi and Zaidi 2020).

In NM therapy, internal dosimetry is the key to successful personalized treatment, since the risk of radiation-
induced toxicity can be significantly reduced by patient-individualized dose calculations (Stabin etal 2019).
Even though, MC simulations for voxel-based dosimetry are considered the gold standard for dosimetry in
personalized therapy, they have not been applied in clinical use, due to the excessive computational cost and
computing time that they require (Zaidi 1999). On the other hand, Al can quickly process and analyse large
amounts of data. Once training is completed, Al can usually provide accurate results on specific tasks
significantly faster than traditional methods like MC. In order to get the best out of these two techniques, several
internal dose prediction studies have used MC simulations as ground truth in order to train ML, e.g. deep neural
network (DNN), prediction models.

To overcome the limitations of the direct MC approach, Gotz et al (Gotz et al 2020) used a hybrid method
based on a U-net DNN architecture in combination with empirical mode decomposition (EMD) techniques in
conjunction with soft tissue kernel MC simulations to achieve a dose map of patients who had undergone
7Lu-PSMA therapy. The system was trained using SPECT and CT from a patient cohort of 26 subjects as input
and individual full MC simulation results as reference. The DNN-EMD hybrid method for internal dose
prediction yielded superior results compared to the MIRD protocol with soft tissue DVK dose calculation
method.

Lee et al (Lee et al 2019) proposed a voxel dose estimation method using dynamic PET/CT image patches of
10 patients as input and MC simulated dose rate maps as ground truth for the training of a 3D U-net CNN. The
dose rate map obtained by this method agreed well with the ground truth with voxel dose rate errors of
2.54% =+ 2.09%. The CNN-based method outperformed traditional personalized internal dosimetry
approaches and showed results comparable with that of the direct MC simulation, but on notably less
computing time since single dose rate maps were generated in less than 4 min using the trained CNN network,
while the direct MC simulation took around 235 h to generate the single dose rate maps (Lee et al 2019).

Akhavanallaf et al (Akhavanallaf et al 2021) suggested a novel methodology for personalized organ-level,
whole-body, voxel-based internal dosimetry using a ResNet composed of 20 convolutional layers. The DNN was
trained using density maps generated by 24 CT images as input and considering the heterogeneity of activity
distribution, non-uniformity of surrounding medium, and patient-specific anatomy. Voxelwise S-values
generated using MC simulations were considered as ground truth. The DNN outperformed conventional
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voxel-level and organ-level MIRD-based approaches, exhibiting performance comparable to the direct MC
approach, having a mean relative absolute error of 4.5% =+ 1.8%, while the computation time for building a
whole-body voxel dose map was less than 0.1% of the time required for direct MC simulations.

In this context, it is essential to integrate modern Al models with the gold standard provided by MC to
accurately assess the internal dosimetry (at organ level) for NM procedures performed on children. We propose
a prediction framework for calculating the absorbed dose per organ that considers each pediatric patient’s
specific anatomy. More specifically, our aim is to train ML algorithms for predicting absorbed doses per organ
based on the ground truth of dosimetry (pre-calculated through MC simulations). With this approach, we
overcome the current procedure that the doses are calculated on predefined S-values and rescaling the organs.
The idea is based on the prediction of absorbed doses per organ, considering different anatomical characteristics
from the basis of the calculation that is done through MC. Our long-term goal is to extend the proposed method
for other patient populations (i.e. adults, obese patients) and incorporate a large list of commonly used
radiopharmaceuticals.

2. Methods

MC simulations were performed using the GATE MC toolkit for a population of computational pediatric
models to calculate the specific absorbed dose rates (SADRs) in several organs and radiopharmaceuticals. The
produced database will serve as training data for the development of a prediction toolkit based on SADRs for any
new pediatric patient for the studied organs and radiopharmaceuticals.

2.1. Dosimetry-SADRs

In this work, we implement the method for calculating the SADRs which has been established by our group in a
previous work (Papadimitroulas et al 2018). In this approach, the calculation of the absorbed dose per organ
takes into account each patient’s specific anatomy and estimates SADRs for each organ according to the specified
clinical biodistribution of administered radiopharmaceutical throughout the whole body. SADRs (Gy/Mbq/
sec) provide the instantaneous absorbed dose rate in a target organ from the activity of all organs of the patient,
based on a specific biodistribution defined at time t;:

1
SADR(rr < rwp, t) = —>  EgiY; o (L
m,r i

where ryyp is whole-body source, E; is the energy of the ith radiation per disintegration deposited in target organ
rrand m,71is the mass of the target organ, while Y; represents the yield per disintegration on the #; biodistribution.
The absorbed dose to a target organ through NM examination (tp = tn.__to) is given by the following

equation (2):

t=final
Drr o) = [ Alws, )SADRGT  rs, t)ds @

(=0

where A(ryp, tp) is the instantaneous whole-body activity at each post-administration time-point fx. Based on
the radiopharmaceutical ;. biodistribution and the duration (¢p) of the activity within the body, the integration
of the SADRSs for each target organ, on several times (#;) of the radiopharmaceutical biodistributions, calculates
the cumulative absorbed dose.

2.2.MC simulations

2.2.1. Pediatric population

For our purpose, a population of 28 pediatric computational phantoms was used for the development of the
simulated dosimetry database. The pediatric phantom population consisted of male and female phantoms of
varying ages and anatomical characteristics, such as mass and height. Indicatively, 22 of the phantoms were
derived from the 4D pediatric XCAT (Segars et al 2015) reference models and 6 were based on the IT’IS Virtual
Family models (Christ et al 2010). The characteristics of the pediatric phantoms are illustrated in table 1, while
the voxel resolution of each phantom was set to 2 x 2 x 2 mm”.

The computational phantoms imported in GATE served both as radiation transport media and activity maps
(identical voxel size of 2 x 2 x 2 mm?). In GateMaterials.db file all the materials used during the simulations
were predefined, since the transport media in GATE take into consideration both the density and the elemental
composition of each organ. Table 1 presents the characteristics of the pediatric population, while the density of
the organs of interest is presented in table S1 of the supplementary material ‘Supplementary data’.
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Table 1. Characteristics of the pediatric phantoms used in the GATE simulations (voxel size of 2 x 2 x 2 mm?).

No. (#) Age (year) Gender Type Size, number of voxels Weight (Kg) Total height (m)
Phantom 1 15 Male ITIS 242 x 156 x 863 50.4 1.7
Phantom 2 5 Female ITIS 175 x 102 x 551 17.7 1.09
Phantom 3 6 Male ITIS 202 x 113 x 591 18.6 1.16
Phantom 4 8 Female ITIS 300 x 122 x 804 29.64 1.36
Phantom 5 8 Male ITIS 218 x 126 x 1286 25.6 1.37
Phantom 6 11 Female ITIS 250 x 140 x 780 34 1.49
Phantom 7 17.2 Male XCAT 339 x 175 x 929 86.2 1.83
Phantom 8 15 Male XCAT 295 x 155 x 845 58 1.66
Phantom 9 2.1 Female XCAT 165 x 115 x 455 12.2 0.86
Phantom 10 2.8 Female XCAT 205 x 125 x 475 14.9 0.92
Phantom 11 3.3 Female XCAT 175 X 115 x 475 13.8 0.93
Phantom 12 5 Female XCAT 207 x 145 x 585 19.9 1.13
Phantom 13 5.2 Female XCAT 179 x 129 x 555 15.3 1.07
Phantom 14 13.8 Male XCAT 325 x 165 x 915 67.4 1.79
Phantom 15 9.8 Female XCAT 263 x 135 x 655 40.7 1.27
Phantom 16 10 Female XCAT 255 x 125 x 715 33 1.39
Phantom 17 12.1 Female XCAT 245 x 135 x 725 38.6 1.41
Phantom 18 14.3 Female XCAT 305 x 165 x 855 73.2 1.68
Phantom 19 15 Female XCAT 295 x 155 x 825 58 1.61
Phantom 20 16.8 Female XCAT 285 x 155 x 805 50.5 1.57
Phantom 21 2.8 Male XCAT 205 x 125x475 14.1 0.92
Phantom 22 3.7 Male XCAT 185 x 115 x 505 16.2 0.97
Phantom 23 5 Male XCAT 206 x 145 x 577 19.9 1.12
Phantom 24 5.3 Male XCAT 215 x 115 X 575 22.7 1.1
Phantom 25 7.8 Male XCAT 225 % 125 x 635 24.4 1.25
Phantom 26 9.6 Male XCAT 245 x 135 x 709 339 1.39
Phantom 27 10 Male XCAT 255 x 125 x 709 33 1.39
Phantom 28 12 Male XCAT 255 x 145 x 765 43.5 1.5

2.2.2. GATE toolkit

The GATE MC toolkit (Jan et al 2004, Jan et al 2011, Sarrut et al 2022) was used for the development of the
dosimetry database. GATE is based on the Geant4 code (Agostinelli et al 2003, Allison et al 2016) and is widely
used and well validated for dosimetry applications (Papadimitroulas 2017, Sarrut et al 2014). Specifically, GATE
v9.1 was used for the execution of the simulations. The ’standard model’ (emstandard_opt3) which is
appropriate for such electromagnetic processes is used in our GATE environment. As far as the method for
calculating the absorbed dose per organ is concerned, the ‘dose actor’ tool was used, for scoring the energy
deposition. The dose actor creates three-dimensional (3D) dose maps of the deposited energy and the absorbed
dose atall organs of the phantoms with a specified voxel resolution. The dose actor takes into consideration the
total energy and the interaction probability of the particles, as well as the density of each voxel.

The voxelized phantoms were imported in GATE using the ‘ImageNestedParametrisedVolume’ technique.
This approach is based on a parameterized method which allows GATE to store a single voxel depiction in
memory, changing its composition and location during the run of the simulation. Lastly, the ‘ion’ source type of
Geant4 was used for the initialization of the primary particles. This is the most realistic and accurate way of
simulating a radionuclide and incorporates both radioactive decay and atomic de-excitation. In our case the
1231 and '>>Sm ion sources were used, while in the case of **™Tc we implemented the ‘user spectrum’, in which
the user specifies the energy of the particles accompanied with their probability weight. Special reference for the
used radioisotopes is presented in the following paragraphs.

All the dosimetry simulations were executed with 10® primaries. In order to accelerate the procedure, the
ensemble of simulations was performed on a high-performance computing (HPC) center. Recently, the HPC
advantages in the medical field and specifically in our pediatric internal dosimetry application have been
reported (Koch etal 2023). This way, the simulations’ execution time was reduced significantly, since 112 jobs
were running in parallel, achieving low statistical uncertainty and demanding fewer memory consumption. The
HPC consisted of nodes that each one included 28-Core Intel Broadwell CPUs and 512 GB of memory. These
characteristics accelerate approximately ~100 times the simulations’ total execution time in contrast to a typical
24 GB memory PC. Statistical uncertainty was calculated according to Chetty et al (Chetty et al 2006), with the
following formula (3) that defines statistical uncertainty ) at voxel k, with N being the number of primary events
and dy ; the deposited energy in voxel k for primary event #:

1311

>
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2.2.3. Radiopharmaceuticals used

The proposed methodology derived from the exploitation of the SADRs, considering the radioactivity
distributed throughout the whole body (i.e. the organ’s own radioactivity as well as the radioactive contribution
from all the other organs), in order to calculate the total absorbed dose per organ. The biodistribution used as
activity map for each one of the radiopharmaceuticals (99mTc—MDP, 131 MIBG, *'1-INa, 1*'I-MIBG and
>Sm-EDTMP) derived from the study of Papadimitroulas et al (Papadimitroulas et al 2018). Time activity
curves were used to simulate 4 different time points of the biodistribution in each radiopharmaceutical, except
1311 INa, where 5 different time points were considered (due to the slow washout of the radiopharmaceutical).
These biodistributions for each radiopharmaceutical are included in the ‘Simulated_dosimetry_database’ file in
the supplementary material.

2.3. Al techniques

In this part of the study, we focus on the development of an internal dosimetry prediction toolkit, based on
Machine Learning regression algorithms and Al ensemble techniques, which can accurately predict SADRs for
pediatric patients per studied organ and radiopharmaceutical. The training and evaluation of the prediction
models was performed using the simulated SADR database described in 2.1 and 2.2.

2.3.1. Machine learning regression algorithms

Eight supervised ML regression algorithms were evaluated: Least Squares Linear Regression (Lai et al 1979),
Ridge Regression (Hoerl and Kennard 1970), AdaBoost (Schapire 2013) regressor, Gradient Boost (Friedman
2001) regressor, XGBoost (eXtreme Gradient Boosting) (Chen and Guestrin 2016) regressor, Random Forest
(Breiman 2001) regressor, Decision Tree (Quinlan 1986) regressor and Support Vector Regressor (Awad and
Khanna 2015). All the ML algorithm implementations used in this study can be found in the open-source
software ML library Scikit-learn (Pedregosa et al 2011), except for XGBoost’s implementation which can be
found in the XGBoost’ open-source software library.

2.3.2. Training procedure for a dosimetry prediction model
In order to train ML models to predict SADR values of a pediatric patient (target value) for each target organ,
over time, for each of the 5 radiopharmaceuticals, we reshaped the simulated dataset as sets of input feature
values (rows) that correspond to each target value. A row of input feature values will be referred as a snapshot.
Our dataset consists of ~3000 snapshots per radiopharmaceutical.

The set of input features consists of:

(a) the personalized anatomical characteristics of the phantoms,
(b) the specific organ of interest and

(¢) thetime point for each target value (SARD) for the specific radiopharmaceutical.

The input features, along with their assigned index, are listed in figure 1.

Since the tested radiopharmaceuticals display varying absorbed dose rate behaviour on the target organs over
time, separate prediction models were trained for each radiopharmaceutical. Moreover, because anatomical
characteristics measurements, such as Lung (total z-height of the lungs), Sitting height and Effective Diameter
(as defined in Boone et al 201 1) may not be as easily accessible to practitioners as the rest, we decided to also
create different models according to the different combinations of available anatomical characteristics. In this
regard, we include the first 7 features (‘Organ’, ‘Time’, ‘Age (year)’, ‘Gender’, ‘Weight (Kg)’, ‘Total height (m)’,
‘BMI (kg/m %)) in all feature combinations and added to these, all 7 possible combinations of the last 3 features
(‘Sitting height (cm)’, ‘Lung (cm)’, ‘Eff. diameter (cm)’), ending up with 8 feature combinations. Furthermore,
we tested and evaluated the predictive accuracy of the ML algorithms, when a model was trained on all the
available organs (multiple organs training) in the database versus when we trained separate models for each
organ (single organ training). A schematic representation of all the combinations that were investigated with Al
techniques among radiopharmaceuticals, features, algorithms, and model training procedure is seen in figure 2.

3 https://xgboost.readthedocs.io/en/latest/index.html
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Input Features & Features’ indexes

Figure 1. Feature list used as input to the prediction models. An index was assigned to each feature, for easier presentation of the input
features’ combinations.
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Figure 2. Schematic representation of all the ML training combinations.

The training method, on single or multiple organs, which yielded better performance, according to the
metrics described in section 2.3.3, was chosen as the final predictive model for each feature combination, ML
algorithm and radiopharmaceutical. By this point, it was clear that 4 algorithms (Random Forest, XGBoost,
Gradient Boost and Decision Tree) were performing better than the rest, thus Hyper-parameter optimization
was performed only on those.

2.3.2.1. Hyper-parameter optimization

Hyper-parameter optimization or tuning is the process of finding a set of hyper-parameter values which allows
an ML algorithm to better fit the data, achieving the best possible performance according to a predefined metric
(MAE in this case), on a cross validation set. Hyper-parameter optimization plays a vital role in the prediction
accuracy of ML algorithms®. Bayesian optimization (Wu et al 2019) was selected due to its ability to achieve
comparable improvement of the predictive performance of ML algorithms in significantly reduced computing
time compared to other optimization methods, setting a prior distribution over the optimization function and
updating its posterior gathering information from the previous sample.

2.3.2.2. Ensemble learning models

Ensemble learning (Dietterich 2000) refers to the process of developing a single ‘strong’ ML model that solves a
computational problem by strategically combining multiple differently performing ‘weaker’ ML models,
treating them as a ‘committee’ of solvers. The principle is that the prediction of the committee, when individual
predictions are combined appropriately, should have better overall accuracy than any individual model
(committee member).

4 https://scikit-optimize.github.io/stable/
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After the completion of the Hyper-parameter optimization process, we used the outputs of the 4 best
performing models (Random Forest, XGBoost, Gradient Boost and Decision Tree) to create weighted average
ensemble learning models.

Weighted average or weighted sum ensemble (Shahhosseini et al 2022) is an ensemble learning approach
that combines the predictions from multiple models, where the contribution of each model is weighted
proportionally to the model’s predictive ability.

In weighted average ensembles, a weight is assigned to each contributing model. That weight is then
multiplied by the model’s prediction and is used for the calculation of the average prediction. In regression, the
average prediction is calculated using the arithmetic mean, as shown in following equation:

lew,» X Pl'

== 4)
> iz Vi

where: P, is the prediction of the ensemble

nis the total number of predictors contributing to the ensemble

P;is the prediction of predictor 1

w;1s the weight assigned to predictor i

To search for optimal model weights that result in improved performance comparing to any individual
contributing model, we used a linear exhaustive approach. Integer weights ranging from 0 to 4 were assigned to
each of the Random Forest, XGBoost, Gradient Boost models and from 0 to 2 for the Decision Tree models,
producing 375 ensembles for each feature combination and each radiopharmaceutical.

2.3.2.3. Cross validation

Theleave one out cross validation (LOOCV) (Sammut and Webb 201 1) method was used to train and validate
the models. The main reason the LOOCV method was selected for this study was due to the limited number
(n=28) of pediatric phantoms. The LOOCV method allows for the use of more data on the training of the
models than any other training and validation method. According to the LOOCV method, the data is divided
into two separate sets, a training and a validation set. The training set consists of snapshots of all the pediatric
phantoms, apart from the snapshots of the one phantom which incorporates the validation set of each training
iteration. So, the snapshots of one phantom are used for validation, and the rest of the dataset is used for the
training of the model. This training and validation process will be repeated as many times as the total number of
phantoms. The validation set’s feature values of each snapshot are then entered as input to the trained model,
which returns its prediction of the SARDs (target value) of the snapshots. This way we end up having a SARD
prediction for each time point and organ for all 28 phantoms for validation purposes.

2.3.2.4. Metrics
To assess the predictive power of the ML models and ensembles, we computed the following performance
measures using LOOCV:

1. Mean absolute error (MAE) is the average of the absolute errors of the model’s predictions against the target
values.

2. Root mean square error (RMSE) is the square root of the average of the squared errors of the model’s
predictions against the target values.

3. R-squared (R?) or coefficient of determination represents the proportion of the variance of the target value
that is explained by the input features in a regression model. R-squared values range from 0 to 1, with larger
R? values indicating better fit of the data.

4. Mean absolute percentage error (MAPE) is the average of the absolute error percentage of the model’s
predictions against the target values and is a relative measure that essentially scales MAE to be in percentage
units instead of the target value’s units.

MAE and RMSE are scale dependent, so they can be used to compare the performance of different predictive
regression models for a particular dataset but not between datasets (Hyndman and Koehler 2006). Smaller MAE
and/or RMSE values indicate better predictive performance. Since, according to literature (Willmott and
Matsuura 2005), MAE is the more natural measure of average error magnitude, and that, unlike RMSE, it is
unambiguous, it was used as the primary model performance measure in this study for performance assessment
and optimization purposes. For the presentation of the results, although, MAPE was preferred because it is
straightforward and easier to interpret that other metrics, like MAE and RMSE, as it provides the error in terms
of percentages.
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Figure 3. Dose maps of **™Tc-MDP radiopharmaceutical ofa 15 year old female phantom at 4 different time points. (A) T=0h, (B)
1.42h,(C)4.11h,(D) T=20.2 h.

3. Results

3.1. Simulated dosimetry database

Dose rates for the 30 different organs of each 28 computational pediatric phantom were estimated through MC
simulation. The output of the GATE toolkit is a 3D dose map of the anthropomorphic paediatric phantoms
reflecting the amount of dose deposited at each organ. Figure 3 illustrates the dose deposition at 4 different time
periods for a 15 year old female phantom for the case of *™Tc-MDP. At this example, the concept of bone
scintigraphy is depicted, since **™Tc-MDP’s main application concerns diagnostic purposes. The radiation was
mainly stored at bones during the examination while much activity and consequently dose was collected at the
bladder which presents an attenuation especially at the latest time point.

As anext step, we extract the dose maps and implement the SADR approach in the simulated outputs. The
relative percentage statistical uncertainty, in the calculated dose values per organ, fluctuated between 0.05% and
2.7%, with a median value 0f 0.11%. The extracted absorbed dose rates presented large variation for the same
organ on different phantoms up to ~70%.

Figure 4 presents indicative dose rate results for the case of *”™Tc-MDP, illustrating the highest and lowest
SADR values per organ that correspond to the youngest and oldest phantoms respectively. Each figure
corresponds to different time point calculations while 8 of the most significant organs are presented. The same
figure for 10 phantoms of various ages used in the present study is included in the supplementary material figure
S1 for accessing SADR values across all phantoms too.

Dose rates distribute to the studied organs progressively (figure 4) and as is seen in figure S1 they present a
similar pattern for phantoms with small age variation regardless the gender. At the supplementary material
‘Simulated_dosimetry_database’, the complete simulated dosimetry database of this study is presented
concerning all the radiopharmaceuticals used in our study for each time point.

3.2. Prediction model performance
In this section we evaluate, using LOOCYV, the predictive power of the ML and ensemble models that were
developed during this study, for predicting SADR values of pediatric patients for 30 different organs of interest,
over time, for each of the 5 radiopharmaceuticals, using as input features the personalised anatomical
characteristics of the phantoms, the specific organ and time point.

After the development of all individual ML and ensemble models we compared their performance based on
the metrics described in 2.3.3 and selected the final predictive model for each combination of the 5
radiopharmaceuticals and the 8 input feature combinations. So, for each radiopharmaceutical, different
predictive models will be applied according to the available features. The evaluation metrics of the best
performing models for each radiopharmaceutical (among all feature combinations and studied organs) ranged
to the values presented in table S2 of the supplementary material ‘Supplementary data’ and were found to be
consistently good.
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Figure 4. The lowest and highest dose rate (SADRs) results in several organs for the case of **™Tc-MDP, at 4 different times.

Indicative comparisons between the ML toolkit’s predictions and the MC simulated SADR values in 8
significant organs for the cases of > Tc-MDP and '*’I-MIBG during the 2nd and 3rd time points respectively,
for 2 pediatric phantoms, a 14.3 year old female and a 5 year old male are illustrated in figure 5. The predicted
values in the figure exhibit very good agreement with MC simulations ground truth, as seen by the indicated
percentage differences. The distributions of mean absolute percentage errors (MAPE) of the best performing ML
or ensemble models for each radiopharmaceutical and all organs are presented with a boxplot in figure 6,
illustrating errors being around ~8% for all radiopharmaceuticals. The distribution across 3 age groups of
MAPE values of the best performing models per organ in the case of >>Sm-EDTMP are presented in boxplots in
figure 7, showing slight variations.

Indicative metrics comparison between the best performing ensemble and individual ML models for the
cases of *'I-MIBG and **™Tc-MDP are presented in figure 8, with error values being normalised to the highest
ones (worse performance) for MAE, MAPE and RMSE, depicting the resulted performance improvement via
ensemble method.

Moreover, boxplots illustrating MAPE values of the best performing model of each radiopharmaceutical and
organ, across all time points, are presented in figures S2—S6 of the supplementary material found in
‘Supplementary data’, for the model evaluation over time.

3.2.1. Computing time

The execution of the MC dosimetry simulation for one phantom and one radiopharmaceutical, took
approximately 28.0 h on a system equipped with an AMD® Ryzen 9 5900x with 24 x 12-core processors and 32
GB of RAM. The development of the internal dosimetry prediction ML toolkit, for one radiopharmaceutical,
including the training and evaluation process of all ML models, Hyperparameter optimization, and generating
all ensembles, for all the combinations of input features, took similarly 23.3 h on the same system. However, this
development procedure is performed once. Thereafter, ML predictions of SADR values for all organs using the
developed ML toolkit, can be generated in under just 2 s for each pediatric patient on the same system. Table 2
summarises the computation time of each procedure required for the ML prediction and the MC calculation of
the SADRs of a pediatric patient.

3.3. Evaluation of the prediction model

We evaluated the proposed methodology with the ground truth of dosimetry calculated by direct MC
simulations as well as, with the well-validated and standardized MIRD schema in terms of absorbed doses per
organ in mGy. More precisely we considered a pediatric computational model (Phantom 8: 15 year old boy, 58
kg) and performed a complete MC simulation in HPC for achieving low statistical uncertainty, for an acquisition
0f20.2 h and an activity of 370 MBq. With such realistic simulations the absorbed doses per organ were extracted
using the ‘dose actors’ provided by GATE (GATE Direct MC). In addition, we used the predicted SADRs in our
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Figure 5. Comparison between ML dose rate predictions to MC dose rate calculations (difference in %) in s1%n1ﬁcant organs for 2
indicative pediatric phantoms for the cases of (a) **™Tc-MDP during the 2nd time point (t = 1.42 h) and (b) '**I-MIBG during the 3rd
time point (t=23.1h).
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radiopharmaceuticals (bottom).

final Al model, using the input features. Phantom 8 was considered as a totally new patient, meaning that we
used the model, which was trained during LOOCV, with Phantom 8 being the validation set. The predicted
SADRs were multiplied with the whole-body activity at each specific time point and the absorbed dose was

11



10P Publishing

Phys. Med. Biol. 68 (2023) 084004 V Eleftheriadis et al

Table 2. Computing time of MC simulations for 1
phantom, ML algorithms training, optimization
and ensembles generation, and prediction of
SADR values of all the organs for the
radiopharmaceutical '**I-MIBG.

Procedure Computing time
MC: SADR calculation 28.0h

ML: training + optimizing 233h

ML: SADR Prediction <2s

Table 3. Comparison of organ absorbed doses for radiopharmaceuticals
99mTcMDP for 8 target organs calculated using MIRDcalc (Boone et al 2011),
direct Monte Carlo method and Al-based method.

Percentage
Absorbed dose (mGy) difference (%)
Organ of interest
GATE Al Al
Direct MIRD versus versus
MC S-values  AISADRs MC MIRD
Brain 1.41 3.28 1.36 3.5 58.5
Kidneys 4.50 5.15 4.71 4.7 8.5
Liver 1.37 1.21 1.52 10.9 25.6
Spleen 1.58 1.61 1.82 15.2 13.0
Bladder 2.68 2.74 2.92 9.0 6.6
Stomach 1.30 1.26 1.49 14.6 18.3
Pancreas 1.85 2.03 1.99 7.6 2.0
Rest of Body 0.92 1.76 0.98 6.5 443

integrated in time (AI SADRS). Finally, the MIRDcalc program’ was used in order to extract absorbed doses per
organ, after correcting the masses of the organs according to Phantom 8. The absorbed doses are presented in the
column of MIRD S-values in table 3. The percentage difference of our method with the other two methods is
presented. Differences of up to 15% and up to 58% are reported in Al versus MC and Al versus MIRD
respectively.

4. Discussion

GATE toolkit was used to execute the MC realistic simulations for a wide range of pediatric models, based on
clinically derived biodistributions for each radiopharmaceutical and organ studied over time. SADR values were
thus calculated for every combination of radiopharmaceutical and organ of interest, at four or five different time
points after the injection. The produced extended simulated database now consists of SADRs for 28
computational models of pediatric patients with different anatomical characteristics of varying age (2—17 years
old), gender, mass and height, regarding 30 organs and 5 radiopharmaceuticals, namely **™Tc-MDP,
'2’LMIBG, "'I-MIBG, "*'I-INa and '*’Sm-EDTMP, at several time points.

The performed simulations provided a statistical uncertainty range between 0.05% and 2.7%. One of the
most significant outcomes of this database concerns the fact that there are indeed fluctuations at the dose rate,
for the same organ on different phantoms, namely up to ~71% difference at male phantoms and up to ~65% at
female phantoms. This indication enhances the importance of taking into consideration the different
anatomical and physiological characteristics of each patient before the definition of the injected activity.

A significant point to mention concerns the pattern of dose rates values in relation to the age of phantoms. As
expected, dose rates are in all cases higher for the youngest children, due to the overall smaller size of their body
and the greater contribution of the cross-irradiating organs. Respectively, older ages illustrate lower values at
dose deposition at all tested organs. In addition to the latter observation, it is useful to mention that dose rates
present a similarity in pattern at models with small age variations between them, which coincides to similar
weight and anatomical characteristics, as was also observed in our previous work (Papadimitroulas et al 2018)
and confirmed in the present study with the extension of the database. Indicatively, as seen in the figure S1, the

5 https://mirdsoft.org/
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15 years old boy (58 kg) illustrates similar dose rate distribution with the 13.8 male phantom (67.4 kg) while the 6
year old male phantom (18.6 kg) coincides also with the 5 year old female phantom (17.7 kg) in dose rates, as
expected, although they differ in gender.

The produced extended database of simulated SADR values enabled the development of ML regression
techniques for fast predicting personalised internal absorbed dose rates for the organs and radiopharmaceuticals
included in the database, for any pediatric patient. Hyperparameter tuning and ensemble Al techniques were
applied, while the best performing models were selected. It is notable that model performance got indeed highly
boosted by ensemble technique in several cases (up to 4% in all metrics besides R” that was found at the same
high-level value of 0.97), while in other cases the ensemble model was equally or slightly worse performing.
Computing time of SADR determination with the developed predictive models is tremendously reduced
compared to the values extracted via MC realistic simulations. Indicative predictions, seen in figure 5 for the case
of ™ T¢c-MDP for a very young boy (5 years old) and an older girl (14.3 years old) in selected organs, agree very
well with the corresponding actual values from the simulated database.

SADR predictions are produced with a MAE below 10% for most of the models that were developed in the
present work (for each radiopharmaceutical and organ), as reported in figure 6 in boxplots. 25% of the
developed models present mean absolute error (MAPE) below 5% with the median value being at 8%, whereas
an uncertainty of 10% is considered more than acceptable in the field. Such differences are common and
acceptable in internal dosimetry. In Divoli et al (Divoli et al 2009) a comparison was implemented to investigate
differences (due to anatomical variations) of the well-established MIRD protocol using S-values with direct MC
dosimetry. Differences up to 140% were reported when realistic cumulative activity was used but decreased to
up to 26% after mass correction. Error levels vary slightly with age, while still lying on low values around 8%, as
seen in figure 7, also depicting a wider distribution of error for intermediate ages (6—12 years old). The highest
age group (12—17 years old) exhibits higher error values on a narrower distribution (figure 7). Finally, figures S2
—S6 in the supplementary material ('Supplementary data') show MAPE values of our models over time for every
pharmaceutical in boxplots across all organs and illustrates that predictivity performance remains at the same
low level over time, as desirable.

Several studies in the literature reported differences in internal dosimetry due to anatomical variations for a
variety of applications incorporating radioimmunotherapy. Differences up to 36% in red marrow were reported
in a study that investigated the influence of the total body mass on the scaling of the S-values, for therapeutic
radiopharmaceuticals (Traino et al 2007). In another study, comparison was applied on the calculation of
effective doses for internal photon dosimetry in voxelized and stylized anthropomorphic phantoms, where
differences of 15%, 25%, 37% and 60% were reported for thyroid, lungs, bones and liver respectively (Kramer
etal2005). Marine et al also mentioned differences in specific absorbed fractions in the range of 10%—-33%
between adult men with normal body mass indices (Marine et al 2010).

MIRD schema is a well-established and well-validated dosimetry protocol, where interpolated S-values are
considered for internal dosimetry assessment, considering the patients’ variability (rescaled organ masses). A
comparison of our proposed approach (Al), using state-of-the-art ML techniques, has been performed with the
ground truth of direct MC dosimetry and with the standardised MIRD schema using the MIRDcalc program. Such a
comparison is presented in table 3, where the differences of the final absorbed doses of 8 different organs of interest is
presented for the *”™Tc case. The maximum differences reported between Al and MC is almost ~15% for spleen and
stomach, while the minimum differences are reported in kidneys and brain in the range of 3%—4%. A largest variation
is reported in the comparison of absorbed doses/organ when comparing Al versus MIRD reaching up to 58%.

The novelty of the proposed approach lies on the prediction of SADRs for each new patient based on the
personalized anatomical characteristics (such as age, gender, weight, height, effective diameter). However, it
should be noted that although the high accuracy on the predictive absorbed doses per organ, there are specific
limitations needed to be considered. SADRs are dependent on the specific biodistribution of each
radiopharmaceutical which is used in the simulation procedure to calculate the simulated SADRs. Such a
limitation is an obstacle in the current form of the model to be generalized for clinical use. However, our
methodology can be also extended towards different biodistributions (which was not the scope of the current
study), providing a ground truth dataset with varying biodistributions in a similar manner with the anatomical
characteristics of this study. Then, ML models can learn the biodistribution variation (of the same
radiopharmaceutical) among different patients, coupled with the varying anatomical characteristics. Another
limitation of the proposed study is the limited representation of the pediatric population. Based on the Society of
Nuclear Medicine it is a standard procedure to use anthropomorphic models for such dosimetry applications.
However, considering the need of high accuracy, increasing the number of the pediatric models and their
variability (different types of models - highly heterogeneous population), could extensively make the prediction
model more accurate and more robust, providing personalized dosimetry assessment. This could be a future
work for optimizing the models, as the purpose of this study was to develop, introduce and evaluate a novel
predictive framework for internal dosimetry pediatric applications. The size of the training dataset is an inherent
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issue of all Al procedures to aim for increased model generalization and predictive power. Finally, the proposed
Al approach and methodology on internal dosimetry prediction for a targeted patient group, can be further
extended to other applications or other patient groups (e.g. obese patients), as well as other organs and
radiopharmaceuticals than the ones studied in the present work. Recently an application of the proposed
approach has been presented showing a Graphical User Interface for clinical use (section 4) (Koch et al 2023).

5. Conclusion

The present study implemented the methodology of the previous work by Papadimitroulas et al
(Papadimitroulas et al 2018) on the SADRs and extended its simulated dosimetry database for the purpose of
exploiting it, towards the development of a prediction dosimetry model. The varying absorbed dose rates of this
wider database, related to anatomical characteristics, age and gender, have been modelled in the present work
using ML techniques, thus facilitating the individualized determination of SADRs for any pediatric patient, for a
list of 5 commonly used radiopharmaceuticals, very fast and accurately. The produced predictive models are
therefore expected to have a significant contribution in nuclear medical pediatric applications towards the
optimization and personalization of dosimetry protocols. The produced enriched and broad database of
simulated SADRs on anatomical characteristics, age and gender enabled the training and development of ML
regression models, resulting to an internal dosimetry prediction toolkit, which predicts very fast the
corresponding SADR values for each new pediatric patient, considering her/his personalised anatomical
characteristics. The proposed methodology of combining the predictive power of Al utilizing MC ground truth
for dosimetry assessment, can be further extended to other populations (adult, obese, pregnant) and medical
applications (radioimmunotherapy), where fast and personalized absorbed dose determination is critical, which
is the case in modern medicine in both diagnostic and therapeutic applications.

A challenging investigation for our future work is to extend the proposed methodology, with the ML
developed prediction models, on S-values calculations (instead of SADR values) aiming to a prediction of the
absorbed doses per organ based on the overall anatomical characteristics of the patients, and not by rescaling
pre-calculated S-values. Thus, new predicted personalized S-values could be generated per patient enhancing
the MIRD schema to more personalized approaches.
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